Mathematics 152 Midterm 2 Review Package -

UBC Engineering Undergraduate Society

Problems are ranked in difficulty as (*) for easy, (**) for medium, and (***) for difficult. Note that sometimes difficulty can be subjective, so do not be discouraged if you are stuck on a (*) problem.

Solutions posted at: https://ubcengineers.ca/tutoring

If you believe that there is an error in these solutions, or have any questions, comments, or suggestions regarding EUS Tutoring sessions, please e-mail us at: tutoring@ubcengineers.ca. If you are interested in helping with EUS tutoring sessions in the future or other academic events run by the EUS, please e-mail vpacademic@ubcengineers.ca.

Some of the problems in this package were not created by the EUS. Those problems originated from one of the following sources:

- Schuam's Outline of Matrix Operations; Richard Bronson
- Calculus 7th ed; James Stewart
- Linear Algebra; Sterling K. Berberian
- Linear Algebra and Its Applications 3rd ed; Gilbert Strang
- Linear Algebra and Matrix Theory; Robert Stoll

All solutions prepared by the EUS.

EUS Health and Wellness Study Tips

- Eat Healthy—Your body needs fuel to get through all of your long hours studying. You should eat a variety of food (not just a variety of ramen) and get all of your food groups in.
- **Take Breaks**—Your brain needs a chance to rest: take a fifteen minute study break every couple of hours. Staring at the same physics problem until your eyes go numb wont help you understand the material.
- **Sleep**—We have all been told we need 8 hours of sleep a night, university should not change this. Get to know how much sleep you need and set up a regular sleep schedule.

Good Luck!

(*) 1. Consider the linear system

$$\begin{cases} x+2y+z=1\\ -x+3z=1\\ x-y-3z=0 \end{cases}$$

- (a) Write this system as an augmented matrix.
- (b) Write the system to row echelon form
- (c) Write the system in reduced row echelon form
- (d) Find the solution to the system

(*) 2. Compute the rank of $A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 2 & 4 & 0 & 2 \end{pmatrix}$

- (*) 3. (a) Find the work done in moving an object along a vector $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} 5\mathbf{k}$ if the applied force is $\mathbf{F} = 2\mathbf{i} \mathbf{j} \mathbf{k}$
 - (b) Find the angle between the applied force and the displacement.

- $(\ast\ast)$ 4. Consider the following lines of Matlab code:
 - x = 1:7;
 - y = 1:0.3:1.7;
 - (a) What is x?

(b) What is y?

- (c) If you call sin(y), what will the output be? If this operation is defined, you may leave your answers in terms of trigonometric functions.
- (d) Is cross(x,y) defined?

(*) 5. What matrix $A : \mathbb{R}^2 \to \mathbb{R}^2$ represents projection onto the x axis followed by projection onto the y axis?

(*) 6. If
$$A = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 1 & 0 \\ -2 & -1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 3 & 1 \\ 2 & -2 & -2 \\ -1 & 2 & 1 \end{pmatrix} C = \begin{pmatrix} 3 & 1 & -3 \\ 0 & 2 & 6 \\ -1 & 2 & 1 \end{pmatrix}$
Compute
(a) AB
(b) AC

Page 5 of 19

What can you say about AB and AC? What does it say about cancellation of matrices? Does AB = AC imply that B = C?

	Mathematics 152 Midt	erm	Page 6 of 19				
		(2	6	$\log 2$	π^2	e	
	7. Compute the determinant of the matrix:	0	5	2	4	$\sqrt{5}$	
(*)	7. Compute the determinant of the matrix:	0	0	π	$\sin(9)$	7	
		0	0	0	-4	21	
		$\sqrt{0}$	0	0	0	6 /	

(*) 8. What matrix $A : \mathbb{R}^2 \to \mathbb{R}^2$ represents projection onto the x axis followed by projection onto the y axis?

(*) 9. Compute the transpose of
$$A = \begin{pmatrix} -6 & 9 & 0 \\ 1 & -1 & 0 \\ 2 & \pi & 3 \\ 5 & 2 & 6 \end{pmatrix}$$

- (*) 10. (a) Compute the product $A\mathbf{x} = \begin{pmatrix} 3 & -6 & 0 \\ 0 & 2 & -2 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$
 - (b) Without computing the determinant, determine if the matrix A is invertible or not.

(*) 11. Given
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} 7 & 8 \\ 0 & -9 \end{pmatrix}$,

- (a) If it is defined, compute AB
- (b) If it is defined, compute BA

Mathematics 152	Midterm 2	cage	Page 8 of 19	
(*) 12. Given $T(\mathbf{x}) = \begin{pmatrix} -1\\ 9 \end{pmatrix}$	$\begin{pmatrix} 3\\4 \end{pmatrix}$ x , and $S(\mathbf{x}) = \begin{pmatrix} 3\\-4 \end{pmatrix}$	$\begin{pmatrix} -2 & 6 \\ 6 & 2 \end{pmatrix} \mathbf{x}, \ \mathbf{c}$	ompute the following (if define	ed)
(a) $T \circ S$				
(b) $S \circ T$				
(c) $T\left(\begin{pmatrix}2\\1\end{pmatrix}\right)$				
(d) $S\left(\begin{pmatrix}-2\\4\end{pmatrix}\right)$				
(e) $S\left(\begin{pmatrix}1\\2\\3\end{pmatrix}\right)$				

- $\begin{array}{c} \mbox{Mathematics 152} & \mbox{Midterm 2 Review Package} \\ (*) \end{tabular} 13. (a) \end{tabular} \mbox{Find the matrix } R: \mathbb{R}^2 \to \mathbb{R}^2 \end{tabular} \mbox{that rotates vectors by 225° counterclockwise} \end{array}$
 - (b) Find the image of (2,5) under this linear transformation.

(**) 14. What matrix has the effect of rotating a vector $v \in \mathbb{R}^2$ through 90° clockwise, and then projecting the result onto the x axis?

Mathem	atics	152

(**) 15. If possible, compute the inverse of $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

(*) 16. Show that
$$A = A^{-1} = A^T$$
, if $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. What is the effect of A acting on a 3 × 3 matrix?

 $(**) \ { \mbox{Mathematics 152} \ Midterm 2 Review Package } \\ \hline { \mbox{Midterm 2 Review Package } \ } \ { \mbox{Midterm 2 Review } \ } \ } \ { \mbox{Midterm 2 Review } \ } \ {$

$$T\left(\begin{pmatrix}2\\3\end{pmatrix}\right) = \begin{pmatrix}5\\7\end{pmatrix}, \quad T\left(\begin{pmatrix}1\\4\end{pmatrix}\right) = \begin{pmatrix}-2\\3\end{pmatrix}$$

- (a) Compute $T\left(\begin{pmatrix}1\\-1\end{pmatrix}\right)$
- (b) Find the matrix for the linear transformation ${\cal T}$
- (c) Find the inverse transformation T^{-1}

	Mathematics 152	Midterm 2 Rev	iew]	Packa	age	
(**)	18. If possible, compute the inverse of	the matrix $A =$	$\begin{pmatrix} 1\\ 3\\ 6 \end{pmatrix}$	$ \begin{array}{r} -2 \\ 5 \\ 4 \end{array} $	$\begin{pmatrix} 3\\1\\2 \end{pmatrix}$	

- (**) 19. If A is an $n \times n$ matrix, and det(A) = x, what are
 - (a) det(3A)
 - (b) det(-A)
 - (c) $\det(A^2)$
 - (d) $\det(A^{-1})$

- (**) 20. (a) Find the matrix $R : \mathbb{R}^2 \to \mathbb{R}^2$ that reflects vectors across the line y = -2x.
 - (b) Show that $R^2 = I$.
 - (c) Reflect the vector (-2,3) across the line y = -2x.

(**) $\overline{21. \text{ Set up the augmented matrix } A \text{ corresponding to this resistor network, with the loop currents in the first three columns.}$

- (**) 22. If each year, 1/10 of electrical engineering students transfer to computer engineering, and 2/10 of computer engineering students transfer to electrical engineering, and there are initially 400 people in electrical engineering, and 600 people in computer engineering
 - (a) Find the transition matrix P
 - (b) Find how many students there are in each discipline after 2 years?

- (**) 23. A Physics 158 course is taught in two sections, and initially 400 students are in section 201, and 350 students are in section 203. If every week 1/4 of those in section 201 and 1/3 of those in section 203 permanently drop the course, and 1/6 of each section transfer to the other section,
 - (a) Find the transition matrix P
 - (b) the number of students in each state after 2 weeks.

You may leave your answer in calculator ready form. (That is, there is no need to multiply out or add fractions to common denominators)

(**) 24. Given $A =$	$\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}$	$\begin{array}{c} 1 \\ 4 \\ 5 \end{array}$	$\begin{pmatrix} 3 \\ 6 \\ 8 \end{pmatrix}$, and $B =$	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$\begin{array}{c} 1 \\ 4 \\ 0 \end{array}$	$\begin{vmatrix} 3 \\ 6 \\ 1 \end{vmatrix}$, and ${\cal C} =$	$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$	$\begin{array}{c} 1 \\ 4 \\ 5 \end{array}$	$\frac{3}{6}$
	1	0	<i>°</i> /		10	0	- /		1	0	0)

(a) Evaluate det(A) by reducing the matrix to upper triangular form.

(b) Compute the determinants of

i. *B*

- ii. C
- iii. AB
- iv. $A^T A$
- v. C^T

(**) $\overline{25. \text{ Consider the linear system for the unknowns } x, y, \text{ and } z.}$

$$4x + 2y - 3z - 6 = 0$$

$$x - 4y + z + 4 = 0$$

$$-x + 2z - 2 = 0$$

- (a) Write the system in an augmented matrix.
- (b) Perform row operations on the augmented matrix to change it to upper triangular form.
- (c) Find the solution to the problem from above.

- (*) 26. Consider the resistor network below:
 - (a) Set up the augmented matrix A corresponding to this resistor network
 - (b) Solve the augmented matrix for the currents 1,2, and 3
 - (c) Find the voltage V_0

