Mathematics 152 Midterm 3 Review Package -

UBC Engineering Undergraduate Society

Attempt questions to the best of your ability. Problems are ranked in difficulty as $(*)$ for easy, $(* *)$ for medium, and $(* * *)$ for difficult.

Solutions posted at: https://ubcengineers.ca/tutoring

If you believe that there is an error in these solutions, or have any questions, comments, or suggestions regarding EUS Tutoring sessions, please e-mail us at: tutoring@ubcengineers.ca. If you are interested in helping with EUS tutoring sessions in the future or other academic events run by the EUS, please e-mail vpacademic@ubcengineers.ca.

Some of the problems in this package were not created by the EUS. Those problems originated from one of the following sources:

- Schuam's Outline of Matrix Operations; Richard Bronson
- Calculus 7th ed; James Stewart
- Linear Algebra; Sterling K. Berberian
- Linear Algebra and Its Applications 3rd ed; Gilbert Strang
- Linear Algebra and Matrix Theory; Robert Stoll

Want a warm up?	Short on study time?	Want a challenge?
$1,2,3$ These cover most of the material	$\begin{array}{c}\text { These are some tougher questions }\end{array}$	
$9,10,11$		$10,11,12$

EUS Health and Wellness Study Tips

- Eat Healthy - Your body needs fuel to get through all of your long hours studying. You should eat a variety of food (not just a variety of ramen) and get all of your food groups in.
- Take Breaks-Your brain needs a chance to rest: take a fifteen minute study break every couple of hours. Staring at the same physics problem until your eyes go numb won't help you understand the material.
- Sleep - We have all been told we need 8 hours of sleep a night, university should not change this. Get to know how much sleep you need and set up a regular sleep schedule.

Good Luck!

(*) 1. Compute the determinant of the matrix: $\left(\begin{array}{ccccc}2 & 6 & \log 2 & \pi^{2} & e \\ 0 & 5 & 2 & 4 & \sqrt{5} \\ 0 & 0 & \pi & \sin (9) & 7 \\ 0 & 0 & 0 & -4 & 21 \\ 0 & 0 & 0 & 0 & 6\end{array}\right)$

Solution: The determinant of a triangular matrix is just the product of its diagonal entries.

$$
\left|\begin{array}{ccccc}
2 & 6 & \log 2 & \pi^{2} & e \\
0 & 5 & 2 & 4 & \sqrt{5} \\
0 & 0 & \pi & \sin (9) & 7 \\
0 & 0 & 0 & -4 & 21 \\
0 & 0 & 0 & 0 & 6
\end{array}\right|=(2)(5)(\pi)(-4)(6)=-240 \pi
$$

(*) 2. Compute the transpose of $A=\left(\begin{array}{ccc}-6 & 9 & 0 \\ 1 & -1 & 0 \\ 2 & \pi & 3 \\ 5 & 2 & 6\end{array}\right)$

Solution: To calculate the transpose of a matrix, simply swap the rows and columns (e.g. column 1 values of A going down become row 1 values going right).
With

$$
A=\left(\begin{array}{ccc}
-6 & 9 & 0 \\
1 & -1 & 0 \\
2 & \pi & 3 \\
5 & 2 & 6
\end{array}\right)
$$

We compute

$$
A^{T}=\left(\begin{array}{cccc}
-6 & 1 & 2 & 5 \\
9 & -1 & \pi & 2 \\
0 & 0 & 3 & 6
\end{array}\right)
$$

(*) 3. (a) Compute the product $A \mathbf{x}=\left(\begin{array}{ccc}3 & -6 & 0 \\ 0 & 2 & -2 \\ 1 & -1 & -1\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$
(b) Without computing the determinant, determine if the matrix A is invertible or not.

Solution:

(a) $A \mathbf{x}=\left(\begin{array}{ccc}3 & -6 & 0 \\ 0 & 2 & -2 \\ 1 & -1 & -1\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}3(2)+(-6)(1)+0(1) \\ 0(2)+2(1)+(-2)(1) \\ 1(2)+(-1)(1)+(-1)(1)\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

Any multiple of $\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ would also produce the zero vector.
(b) The matrix is not invertible because it maps nonzero vectors to the zero vector.
(*) 4. Given $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & -5 & 6\end{array}\right)$ and $B=\left(\begin{array}{cc}7 & 8 \\ 0 & -9\end{array}\right)$,
(a) If it is defined, compute $A B$
(b) If it is defined, compute $B A$

Solution:

(a) Since the matrix dimensions don't match for multiplication,

$$
A B=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & -5 & 6
\end{array}\right)\left(\begin{array}{cc}
7 & 8 \\
0 & -9
\end{array}\right)=\text { undefined }
$$

(b) Since the matrix dimensions match for multiplication,

$$
\begin{aligned}
B A & =\left(\begin{array}{cc}
7 & 8 \\
0 & -9
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & -5 & 6
\end{array}\right) \\
& =\left(\begin{array}{ccc}
7(1)+8(4) & 7(2)+8(-5) & 7(3)+8(6) \\
0(1)+(-9)(4) & 0(2)+(-9)(-5) & 0(3)+(-9)(6)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
39 & -26 & 69 \\
-36 & 45 & -54
\end{array}\right)
\end{aligned}
$$

5. If possible, compute the inverse of $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$

Solution:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \\
&(A \mid I)=\left(\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
4 & 5 & 6 & 0 & 1 & 0 \\
7 & 8 & 9 & 0 & 0 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -3 & -6 & -4 & 1 & 0 \\
0 & -6 & -12 & -7 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Note that the last two rows of A after the first elimination step are scalar multiples of each other. Therefore A is not invertible. The reader may check that the matrix's determinant is zero.
(*) 6. Show that $A=A^{-1}=A^{T}$, if $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$. What is the effect of A acting on a 3×3 matrix?

Solution:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&(A \mid I)=\left(\begin{array}{lll|lll}
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
&=\left(I \mid A^{-1}\right)
\end{aligned}
$$

Thus $A=A^{-1}$

$$
A^{T}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=A
$$

Thus all the equalities hold.
The effect of A acting on a 3×3 matrix is that it swaps the first two columns. Thus it makes sense that it is its own inverse. This type of matrix (with zeros everywhere and only a single 1 in each column) is called a permutation matrix, because it swaps (permutes) rows and columns when it multiplies another matrix from the left.
$(* *) \quad$ 7. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, is a linear transformation, and we know that

$$
T\left(\binom{2}{3}\right)=\binom{5}{7}, \quad T\left(\binom{1}{4}\right)=\binom{-2}{3}
$$

(a) Compute $T\left(\binom{1}{-1}\right)$
(b) Find the matrix for the linear transformation T
(c) Find the inverse transformation T^{-1}

Solution:

(a)

$$
\begin{aligned}
T\left(\binom{1}{-1}\right) & =T\left(\binom{2-1}{3-4}\right) \\
& =T\left(\binom{2}{3}\right)-T\left(\binom{1}{4}\right) \\
& =\binom{5}{7}-\binom{-2}{3} \\
& =\binom{7}{4}
\end{aligned}
$$

Note: This is only possible due to the properties of a linear transformation, which permit addition/subtraction of input/outputs.

$$
T\left(\binom{x_{1} \pm x_{2}}{y_{1} \pm y_{2}}\right)=T\left(\binom{x_{1}}{y_{1}}\right) \pm T\left(\binom{x_{2}}{y_{2}}\right)
$$

(b) Using the property noted above, solve for the transformations of unit vectors to find the matrix for the linear transformation.

$$
\begin{aligned}
T\left(\binom{2}{3}\right)-2 T\left(\binom{1}{4}\right) & =T\left(\binom{0}{-5}\right) \\
& =\binom{5}{7}-2\binom{-2}{3} \\
& =\binom{9}{1} \\
& =-5 T\left(\binom{0}{1}\right)
\end{aligned}
$$

$$
T\left(\binom{0}{1}\right)
$$

$=\binom{-9 / 5}{-1 / 5}$

$$
\begin{aligned}
& T\left(\binom{1}{0}\right)=T\left(\binom{1}{-1}\right)+\left(\binom{0}{1}\right) \\
&=\binom{7}{4}+\binom{-9 / 5}{-1 / 5} \\
&=\binom{26 / 5}{19 / 5} \\
& T\left(\binom{1}{0}\right)=\binom{26 / 5}{19 / 5} \\
& T=\left(\begin{array}{ll}
26 / 5 & -9 / 5 \\
19 / 5 & -1 / 5
\end{array}\right)=\frac{1}{5}\left(\begin{array}{ll}
26 & -9 \\
19 & -1
\end{array}\right)
\end{aligned}
$$

(c)

$$
\left(\begin{array}{cc}
26 / 5 & -9 / 5 \\
19 / 5 & -1 / 5
\end{array}\right)^{-1}=\frac{1}{29}\left(\begin{array}{cc}
-1 & 9 \\
-19 & 26
\end{array}\right)
$$

Note: If inverse transformation exists $(\operatorname{det}(A) \neq 0), T^{-1}$ for a 2×2 matrix is:

$$
T^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

$(* *)$ 8. If possible, compute the inverse of the matrix $A=\left(\begin{array}{ccc}1 & -2 & 3 \\ 3 & 5 & 1 \\ 6 & 4 & 2\end{array}\right)$

Solution:

$$
\begin{aligned}
(A \mid I) & =\left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 & 0 \\
3 & 5 & 1 & 0 & 1 & 0 \\
6 & 4 & 2 & 0 & 0 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 & 0 \\
0 & 11 & -8 & -3 & 1 & 0 \\
0 & 16 & -16 & -6 & 0 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 & 0 \\
0 & 11 & -8 & -3 & 1 & 0 \\
0 & 1 & -1 & -6 / 16 & 0 & 1 / 16
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 & 0 \\
0 & 1 & -1 & -6 / 16 & 0 & 1 / 16 \\
0 & 11 & -8 & -3 & 1 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 \\
0 & 1 & -1 & -3 / 8 & 0 & 1 / 16 \\
0 & 0 & 3 & -3+33 / 8 & 1 & -11 / 16
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & -2 & 3 & 1 & 0 & 0 \\
0 & 1 & -1 & -3 / 8 & 0 & 1 / 16 \\
0 & 0 & 1 & 3 / 8 & 1 / 3 & -11 / 48
\end{array}\right) \\
& \sim\left(\begin{array}{lll|ll}
1 & -2 & 0 & -1 / 8 & -1 \\
0 & 1 & 0 & 0 & 11 / 3 \\
0 & 0 & 1 & 3 / 8 & 1 / 3 \\
-11 / 6 \\
0 & -11 / 48
\end{array}\right) \\
& \sim\left(\begin{array}{lll|lll}
1 & 0 & 0 & -1 / 8 & -1 / 3 & -17 / 48 \\
0 & 1 & 0 & 0 & 1 / 3 & -1 / 6 \\
0 & 0 & 1 & 3 / 8 & 1 / 3 & -11 / 48
\end{array}\right) \\
& \sim\left(I \mid A^{-1}\right)
\end{aligned}
$$

Thus

$$
A^{-1}=\left(\begin{array}{ccc}
-1 / 8 & -1 / 3 & 17 / 48 \\
0 & 1 / 3 & -1 / 6 \\
3 / 8 & 1 / 3 & -11 / 48
\end{array}\right)
$$

$=1 \frac{}{48\left(\begin{array}{ccc}-6 & -16 & 17 \\ 0 & 16 & -8 \\ 18 & 16 & -11\end{array}\right)}$
(**) 9. If A is an $n \times n$ matrix, and $\operatorname{det}(A)=x$, what are
(a) $\operatorname{det}(3 A)$
(b) $\operatorname{det}(-A)$
(c) $\operatorname{det}\left(A^{2}\right)$
(d) $\operatorname{det}\left(A^{-1}\right)$

Solution: All 4 parts utilize the knowledge of properties of determinants.
(a) A property of determinants of matrices is $\operatorname{det}(\mathrm{cA})=c^{n} \operatorname{det}(\mathrm{~A})$, so $\operatorname{det}(3 A)=3^{n} \cdot x$
(b) $\operatorname{det}(-A)=(-1)^{n} \cdot x$
(c) $\operatorname{det}\left(A^{2}\right)=x^{2}$
(d) $\operatorname{det}\left(A^{-1}\right)=x^{-1}$
$(* *)$ 10. If each year, $1 / 10$ of electrical engineering students transfer to computer engineering, and $2 / 10$ of computer engineering students transfer to electrical engineering, and there are initially 400 people in electrical engineering, and 600 people in computer engineering
(a) Find the transition matrix P
(b) Find how many students there are in each discipline after 2 years?

Solution:

(a) Suppose E is the number of electrical engineering students, and C is the number of computer engineering students. The probability transition matrix will obey the following relationship:

$$
\binom{E}{C}_{k+1}=P\binom{E}{C}_{k}
$$

From this we can discern the matrix P :

$$
P=\left(\begin{array}{ll}
9 / 10 & 2 / 10 \\
1 / 10 & 8 / 10
\end{array}\right)
$$

and the initial condition

$$
\binom{E}{C}_{0}=\binom{400}{600}
$$

(b) We perform the computation:

- Students after the first step:

$$
\begin{aligned}
\binom{E}{C}_{1} & =P\binom{E}{C}_{0} \\
& =\left(\begin{array}{ll}
9 / 10 & 2 / 10 \\
1 / 10 & 8 / 10
\end{array}\right)\binom{400}{600} \\
& =\binom{480}{520}
\end{aligned}
$$

- Students after the second step:

$$
\begin{aligned}
\binom{E}{C}_{2} & =P\binom{E}{C}_{1} \\
& =\left(\begin{array}{ll}
9 / 10 & 2 / 10 \\
1 / 10 & 8 / 10
\end{array}\right)\binom{480}{520} \\
& =\binom{536}{464}
\end{aligned}
$$

$(* *)$ 11. A Physics 158 course is taught in two sections, and initially 400 students are in section 201, and 350 students are in section 203. If every week $1 / 4$ of those in section 201 and $1 / 3$ of those in section 203 permanently drop the course, and $1 / 6$ of each section transfer to the other section,
(a) Find the transition matrix P
(b) the number of students in each state after 2 weeks.

You may leave your answer in calculator ready form. (That is, there is no need to multiply out or add fractions to common denominators)

Solution:

(a) Let the number of students in section 201 be S_{201}, the number of students in section 203 be S_{203}, and the number of students who have dropped the course be D. The probability transition matrix will obey the following relation:

$$
\left(\begin{array}{c}
S_{201} \\
S_{203} \\
D
\end{array}\right)_{k+1}=P\left(\begin{array}{c}
S_{201} \\
S_{203} \\
D
\end{array}\right)_{k} \Rightarrow P=\left(\begin{array}{ccc}
7 / 12 & 1 / 6 & 0 \\
1 / 6 & 1 / 2 & 0 \\
1 / 4 & 1 / 3 & 1
\end{array}\right)
$$

The initial condition will be

$$
\left(\begin{array}{c}
S_{201} \\
S_{203} \\
D
\end{array}\right)_{0}=\left(\begin{array}{c}
400 \\
350 \\
0
\end{array}\right)
$$

(b) We perform the computation:

- The number of students in each state after the first week will be:

$$
\begin{aligned}
\left(\begin{array}{c}
S_{201} \\
S_{203} \\
D
\end{array}\right)_{1} & =P\left(\begin{array}{c}
S_{201} \\
S_{203} \\
D
\end{array}\right)_{0} \\
& =\left(\begin{array}{ccc}
7 / 12 & 1 / 6 & 0 \\
1 / 6 & 1 / 2 & 0 \\
1 / 4 & 1 / 3 & 1
\end{array}\right)\left(\begin{array}{c}
400 \\
350 \\
0
\end{array}\right) \\
& =\left(\begin{array}{l}
875 / 3 \\
725 / 3 \\
650 / 3
\end{array}\right)
\end{aligned}
$$

- And the number of students in each state after the second week will be

$$
\begin{aligned}
\left(\begin{array}{c}
S_{201} \\
S_{203} \\
D
\end{array}\right)_{2} & =P\left(\begin{array}{c}
S_{201} \\
S_{203} \\
D
\end{array}\right)_{1} \\
& =\left(\begin{array}{ccc}
7 / 12 & 1 / 6 & 0 \\
1 / 6 & 1 / 2 & 0 \\
1 / 4 & 1 / 3 & 1
\end{array}\right)\left(\begin{array}{l}
875 / 3 \\
725 / 3 \\
650 / 3
\end{array}\right) \\
& =\left(\begin{array}{c}
2525 / 12 \\
1525 / 9 \\
5525 / 36
\end{array}\right)
\end{aligned}
$$

Thus, after 2 weeks, the the number of students in each class is

$$
\left(\begin{array}{c}
S_{201} \\
S_{203} \\
D
\end{array}\right)_{2}=\left(\begin{array}{c}
2525 / 12 \\
1525 / 9 \\
5525 / 36
\end{array}\right)
$$

$(* *)$ 12. Given $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 0 & 4 & 6 \\ 1 & 5 & 8\end{array}\right)$, and $B=\left(\begin{array}{lll}1 & 1 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1\end{array}\right)$, and $C=\left(\begin{array}{lll}1 & 1 & 3 \\ 0 & 4 & 6 \\ 1 & 5 & 9\end{array}\right)$
(a) Evaluate $\operatorname{det}(A)$ by reducing the matrix to upper triangular form.
(b) Compute the determinants of
i. B
ii. C
iii. $A B$
iv. $A^{T} A$
v. C^{T}

Solution:

(a)

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
1 & 1 & 3 \\
0 & 4 & 6 \\
1 & 5 & 8
\end{array}\right) \\
& \sim\left(\begin{array}{lll}
1 & 1 & 3 \\
0 & 4 & 6 \\
0 & 4 & 5
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
1 & 1 & 3 \\
0 & 4 & 6 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Thus

$$
\operatorname{det}(A)=(1)(4)(-1)=-4
$$

(b) i.

$$
\operatorname{det}(B)=(1)(4)(1)=4
$$

ii.

$$
\operatorname{det}(C)=\left|\begin{array}{lll}
1 & 1 & 3 \\
0 & 4 & 6 \\
1 & 5 & 8
\end{array}\right|+\left|\begin{array}{lll}
1 & 1 & 3 \\
0 & 4 & 6 \\
0 & 0 & 1
\end{array}\right|=-4+4=0
$$

iii. $\operatorname{det}(A B)=(-4)(4)=-16$
iv. $\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(A^{2}\right)=(-4)^{2}=16$
v. $\operatorname{det}\left(C^{T}\right)=\operatorname{det}(C)=0$

