Mathematics 152 Midterm 3 Review Package -

UBC Engineering Undergraduate Society

Attempt questions to the best of your ability. Problems are ranked in difficulty as $(*)$ for easy, $(* *)$ for medium, and $(* * *)$ for difficult.

Solutions posted at: https://ubcengineers.ca/tutoring

If you believe that there is an error in these solutions, or have any questions, comments, or suggestions regarding EUS Tutoring sessions, please e-mail us at: tutoring@ubcengineers.ca. If you are interested in helping with EUS tutoring sessions in the future or other academic events run by the EUS, please e-mail vpacademic@ubcengineers.ca.

Some of the problems in this package were not created by the EUS. Those problems originated from one of the following sources:

- Schuam's Outline of Matrix Operations; Richard Bronson
- Calculus 7th ed; James Stewart
- Linear Algebra; Sterling K. Berberian
- Linear Algebra and Its Applications 3rd ed; Gilbert Strang
- Linear Algebra and Matrix Theory; Robert Stoll

Want a warm up?	Short on study time?	Want a challenge?
$1,2,3$ These cover most of the material	$\begin{array}{c}\text { These are some tougher questions }\end{array}$	
$9,10,11$		$10,11,12$

EUS Health and Wellness Study Tips

- Eat Healthy - Your body needs fuel to get through all of your long hours studying. You should eat a variety of food (not just a variety of ramen) and get all of your food groups in.
- Take Breaks-Your brain needs a chance to rest: take a fifteen minute study break every couple of hours. Staring at the same physics problem until your eyes go numb won't help you understand the material.
- Sleep - We have all been told we need 8 hours of sleep a night, university should not change this. Get to know how much sleep you need and set up a regular sleep schedule.

Good Luck!

(*) 1. Compute the determinant of the matrix: $\left(\begin{array}{ccccc}2 & 6 & \log 2 & \pi^{2} & e \\ 0 & 5 & 2 & 4 & \sqrt{5} \\ 0 & 0 & \pi & \sin (9) & 7 \\ 0 & 0 & 0 & -4 & 21 \\ 0 & 0 & 0 & 0 & 6\end{array}\right)$
(*) 2. Compute the transpose of $A=\left(\begin{array}{ccc}-6 & 9 & 0 \\ 1 & -1 & 0 \\ 2 & \pi & 3 \\ 5 & 2 & 6\end{array}\right)$
$(*) \quad 3 . \quad$ (a) Compute the product $A \mathbf{x}=\left(\begin{array}{ccc}3 & -6 & 0 \\ 0 & 2 & -2 \\ 1 & -1 & -1\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$
(b) Without computing the determinant, determine if the matrix A is invertible or not.
(*) 4. Given $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & -5 & 6\end{array}\right)$ and $B=\left(\begin{array}{cc}7 & 8 \\ 0 & -9\end{array}\right)$,
(a) If it is defined, compute $A B$
(b) If it is defined, compute $B A$
$(* *)$ 5. If possible, compute the inverse of $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$
(*) 6. Show that $A=A^{-1}=A^{T}$, if $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$. What is the effect of A acting on a 3×3 matrix?

Mathematics 152
$(* *) \quad$ 7. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, is a linear transformation, and we know that

$$
T\left(\binom{2}{3}\right)=\binom{5}{7}, \quad T\left(\binom{1}{4}\right)=\binom{-2}{3}
$$

(a) Compute $T\left(\binom{1}{-1}\right)$
(b) Find the matrix for the linear transformation T
(c) Find the inverse transformation T^{-1}
$(* *)$ 8. If possible, compute the inverse of the matrix $A=\left(\begin{array}{ccc}1 & -2 & 3 \\ 3 & 5 & 1 \\ 6 & 4 & 2\end{array}\right)$
(**) 9. If A is an $n \times n$ matrix, and $\operatorname{det}(A)=x$, what are
(a) $\operatorname{det}(3 A)$
(b) $\operatorname{det}(-A)$
(c) $\operatorname{det}\left(A^{2}\right)$
(d) $\operatorname{det}\left(A^{-1}\right)$
$(* *)$ 10. If each year, $1 / 10$ of electrical engineering students transfer to computer engineering, and $2 / 10$ of computer engineering students transfer to electrical engineering, and there are initially 400 people in electrical engineering, and 600 people in computer engineering
(a) Find the transition matrix P
(b) Find how many students there are in each discipline after 2 years?

Mathematics 152
Midterm 1 Review Package
Page 8 of 9
(**) 11. A Physics 158 course is taught in two sections, and initially 400 students are in section 201, and 350 students are in section 203. If every week $1 / 4$ of those in section 201 and $1 / 3$ of those in section 203 permanently drop the course, and $1 / 6$ of each section transfer to the other section,
(a) Find the transition matrix P
(b) the number of students in each state after 2 weeks.

You may leave your answer in calculator ready form. (That is, there is no need to multiply out or add fractions to common denominators)
$(* *)$ 12. Given $A=\left(\begin{array}{ccc}1 & 1 & 3 \\ 0 & 4 & 6 \\ 1 & 5 & 8\end{array}\right)$, and $B=\left(\begin{array}{ccc}1 & 1 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1\end{array}\right)$, and $C=\left(\begin{array}{lll}1 & 1 & 3 \\ 0 & 4 & 6 \\ 1 & 5 & 9\end{array}\right)$
(a) Evaluate $\operatorname{det}(A)$ by reducing the matrix to upper triangular form.
(b) Compute the determinants of
i. B
ii. C
iii. $A B$
iv. $A^{T} A$
v. C^{T}

