## Mathematics 152 Midterm 3 Review Package –

UBC Engineering Undergraduate Society

Attempt questions to the best of your ability. Problems are ranked in difficulty as (\*) for easy, (\*\*) for medium, and (\*\*\*) for difficult.

Solutions posted at: https://ubcengineers.ca/tutoring

If you believe that there is an error in these solutions, or have any questions, comments, or suggestions regarding EUS Tutoring sessions, please e-mail us at: tutoring@ubcengineers.ca. If you are interested in helping with EUS tutoring sessions in the future or other academic events run by the EUS, please e-mail vpacademic@ubcengineers.ca.

Some of the problems in this package were not created by the EUS. Those problems originated from one of the following sources:

- Schuam's Outline of Matrix Operations; Richard Bronson
- Calculus 7th ed; James Stewart
- Linear Algebra; Sterling K. Berberian
- Linear Algebra and Its Applications 3rd ed; Gilbert Strang
- Linear Algebra and Matrix Theory; Robert Stoll

| Want a warm up?               | Short on study time?             | Want a challenge?                |  |  |  |  |
|-------------------------------|----------------------------------|----------------------------------|--|--|--|--|
| These are the easier problems | These cover most of the material | These are some tougher questions |  |  |  |  |
| 1, 2, 3                       | 7, 9, 10, 11                     | 10, 11, 12                       |  |  |  |  |

## EUS Health and Wellness Study Tips

- Eat Healthy—Your body needs fuel to get through all of your long hours studying. You should eat a variety of food (not just a variety of ramen) and get all of your food groups in.
- Take Breaks—Your brain needs a chance to rest: take a fifteen minute study break every couple of hours. Staring at the same physics problem until your eyes go numb won't help you understand the material.
- **Sleep**—We have all been told we need 8 hours of sleep a night, university should not change this. Get to know how much sleep you need and set up a regular sleep schedule.



Good Luck!

|     | Mathematics 152 Midt |                                   |                         | rm 1                | l R | eview I  | Package   | Page 2 of  | Page 2 of 9 |  |  |  |
|-----|----------------------|-----------------------------------|-------------------------|---------------------|-----|----------|-----------|------------|-------------|--|--|--|
|     |                      |                                   |                         | $\sqrt{2}$          | 6   | $\log 2$ | $\pi^2$   | e          |             |  |  |  |
| (*) |                      | Compute the determinant of the ma |                         | 0                   | 5   | 2        | 4         | $\sqrt{5}$ |             |  |  |  |
|     | 1.                   |                                   | erminant of the matrix: | 0                   | 0   | $\pi$    | $\sin(9)$ | 7          |             |  |  |  |
|     |                      |                                   |                         | 0                   | 0   | 0        | -4        | 21         |             |  |  |  |
|     |                      |                                   |                         | $\langle 0 \rangle$ | 0   | 0        | 0         | 6 /        |             |  |  |  |

(\*) 2. Compute the transpose of 
$$A = \begin{pmatrix} -6 & 9 & 0 \\ 1 & -1 & 0 \\ 2 & \pi & 3 \\ 5 & 2 & 6 \end{pmatrix}$$

- (\*) 3. (a) Compute the product  $A\mathbf{x} = \begin{pmatrix} 3 & -6 & 0 \\ 0 & 2 & -2 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ 
  - (b) Without computing the determinant, determine if the matrix A is invertible or not.

(\*) 4. Given 
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 7 & 8 \\ 0 & -9 \end{pmatrix}$ ,

- (a) If it is defined, compute AB
- (b) If it is defined, compute BA

| 3 F i 1 |          | -1         | 20 |
|---------|----------|------------|----|
| Math    | ometice  | - 1        | 57 |
| maun    | Cinatics | _ <b>T</b> | 04 |

(\*\*) 5. If possible, compute the inverse of  $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ 

(\*) 6. Show that 
$$A = A^{-1} = A^T$$
, if  $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ . What is the effect of A acting on a 3 × 3 matrix?

$$T\left(\begin{pmatrix}2\\3\end{pmatrix}\right) = \begin{pmatrix}5\\7\end{pmatrix}, \quad T\left(\begin{pmatrix}1\\4\end{pmatrix}\right) = \begin{pmatrix}-2\\3\end{pmatrix}$$

- (a) Compute  $T\left(\begin{pmatrix}1\\-1\end{pmatrix}\right)$
- (b) Find the matrix for the linear transformation  ${\cal T}$
- (c) Find the inverse transformation  $T^{-1}$

|      | Mathematics 152                        | Midterm 1 Revie  | age                                       |                |                                         |  |
|------|----------------------------------------|------------------|-------------------------------------------|----------------|-----------------------------------------|--|
| (**) | 8. If possible, compute the inverse of | the matrix $A =$ | $\begin{pmatrix} 1\\ 3\\ 6 \end{pmatrix}$ | $-2 \\ 5 \\ 4$ | $\begin{pmatrix} 3\\1\\2 \end{pmatrix}$ |  |

Mathematics 152

(\*\*) 9. If A is an  $n \times n$  matrix, and det(A) = x, what are

- (b) det(-A)
- (c)  $\det(A^2)$
- (d)  $\det(A^{-1})$

- (\*\*) 10. If each year, 1/10 of electrical engineering students transfer to computer engineering, and 2/10 of computer engineering students transfer to electrical engineering, and there are initially 400 people in electrical engineering, and 600 people in computer engineering
  - (a) Find the transition matrix P
  - (b) Find how many students there are in each discipline after 2 years?

<sup>(</sup>a) det(3A)

- (\*\*) 11. A Physics 158 course is taught in two sections, and initially 400 students are in section 201, and 350 students are in section 203. If every week 1/4 of those in section 201 and 1/3 of those in section 203 permanently drop the course, and 1/6 of each section transfer to the other section,
  - (a) Find the transition matrix P
  - (b) the number of students in each state after 2 weeks.

You may leave your answer in calculator ready form. (That is, there is no need to multiply out or add fractions to common denominators)

Mathematics 152

| -    |     |             | (1)            | 1 | 3) |             | (1)                | 1 | 3  |             | (1)            | 1 | 3/ |
|------|-----|-------------|----------------|---|----|-------------|--------------------|---|----|-------------|----------------|---|----|
| (**) | 12. | Given $A =$ | 0              | 4 | 6  | , and $B =$ | 0                  | 4 | 6  | , and $C =$ | 0              | 4 | 6  |
|      |     |             | $\backslash 1$ | 5 | 8/ |             | $\left( 0 \right)$ | 0 | 1/ |             | $\backslash 1$ | 5 | 9, |

(a) Evaluate det(A) by reducing the matrix to upper triangular form.

(b) Compute the determinants of

i. *B* 

- ii. C
- iii. AB
- iv.  $A^T A$ v.  $C^T$