
Physics 157 Midterm 1 Review Package - Solutions

UBC Engineering Undergraduate Society

Attempt questions to the best of your ability. Problems are ranked in difficulty as (∗) for easy, (∗∗) for
medium, and (∗ ∗ ∗) for difficult. Difficulty is subjective, so do not be discouraged if you are stuck on a (∗)
problem.

Solutions will be posted at: https://ubcengineers.ca/review-packages

If you believe that there is an error in these solutions, or have any questions, comments, or suggestions
regarding EUS Tutoring sessions, please e-mail us at: tutoring@ubcengineers.ca. If you are interested in
helping with EUS tutoring sessions in the future or other academic events run by the EUS, please e-mail
vpacademic@ubcengineers.ca.

Want a warm up? Short on study time? Want a challenge?
These are the easier problems These cover most of the material These are some tougher questions

1, 2, 3, 4 6, 9, 11, 12, 15 14, 15, 16

Some of the problems in this package were not created by the EUS. Those problems originated from one
of the following sources:

• Fundamentals of Physics / David Halliday, Robert Resnick, Jearl Walker. – 9th ed.

• Exercises for the Feynman Lectures on Physics / Matthew Sands, Richard Feynman, Robert Leighton.

All solutions prepared by the EUS.

EUS Health and Wellness Study Tips

• Eat Healthy—Your body needs fuel to get through all of your long hours studying. You should eat
a variety of food (not just a variety of ramen) and get all of your food groups in.

• Take Breaks—Your brain needs a chance to rest: take a fifteen minute study break every couple of
hours. Staring at the same physics problem until your eyes go numb wont help you understand the
material.

• Sleep—Weve all been told we need 8 hours of sleep a night, university shouldnt change this. Get to
know how much sleep you need and set up a regular sleep schedule.

Good Luck!
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1.(∗) A cylindrical aluminum rod, with an initial length of 0.8000 m and a radius of 1000.0µm, is clamped in
place at one end and then stretched by a machine pulling parallel to its length at its other end. Assume
that the rod’s mass density does not change and that its radius decreases uniformly along the length
of the rod. Find the magnitude of the force required to decrease the radius to 999.9µm. The Young’s
modulus for aluminum is YAl = 70 GPa.

Solution:

Let l = 0.8 m be the initial length of the rod and r = 0.001 m be the initial radius of the rod.

Let l′ be the length of the rod after stretching and r′ = 0.0009999 m the radius of the rod after
stretching.

The volume of the rod will stay constant, thus

V = lr2π = l′(r′)2π

We solve, using our numbers above, for l′ = 0.80016 m.

We find ∆l = l′ − l = 0.00016 m, and A′ = π(r′)2 = 3.1410 mm2 and plug the numbers into Hooke’s
law

F

A′
= Y

∆l

l

This yields
F = 43.973 N
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2.(∗) A cylinder with a leak-less, frictionless piston contains 1.0 m3 of a monatomic gas with a gauge pressure
of 1 atm. The gas is very slowly compressed until the final volume is only 0.4 m3. How much work W
must be done to accomplish this compression?

Solution:
In the ideal gas law, P stands for absolute pressure. We can take our atmospheric pressure to be
1 atm, and since the gauge pressure is 1 atm, we know that absolute pressure P0 = 1 atm + 1 atm =
2 atm

Because the gas is very slowly compressed, we can assume that the process is isothermal. Work for
an isothermal process is given by

W = nRT ln(Vf/Vi)

T is constant throughout the entire process, and we can substitute nRT for some PV during the
process. It is convenient to choose the PV from the initial state.

PV = P0V0 = 2 atm(101.3 · 103 Pa/atm)(1.0 m3) = 202.6 · 103 J

We obtain
W = P0V0 ln(0.4 m3/1.0 m3) = −1.86 · 105 J

However, this is the work done by the gas. The question wants the work done by the external force,
so the final answer is

Wext = 1.86 · 105 J
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3.(∗) Due to a temperature rise of 32◦C, a bar with a crack at its centre buckles upward. If the fixed distance
L0 is 3.77 m and the coefficient of linear expansion of the bar is 25 ·10−6/◦ C, find the rise x of the centre.

Solution:
We are given: ∆T = 32 ◦C, α = 25 · 10−6/◦C, and L0 = 3.77 m.

If we let L′ = L0 + ∆L be the total length of the bar after expansion, then by ∆L = L0α∆T , we
know L′ = 3.773 m.

From the Pythagorean Theorem, we obtain (L′/2)2 − (L0/2)2 = x2.

3.5589− 3.5532 = 0.00568 = x2

This gives
x = 0.0754 m = 7.54 cm
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4.(∗) The temperature of a Pyrex disk is changed from 10.0◦C to 60.0◦C. Its initial radius is 8.00 cm, and
its initial thickness is 0.50 cm. Young’s Modulus of pyrex is 67 GPa, and the linear thermal expansion
coefficient of Pyrex is 3.2 · 10−6/◦C.

(a) What is the change in volume of the disk?

(b) If the disk is constrained rigidly across its faces before it is heated, what will be the stress in the
disk after it is heated?

Solution:

(a) First, notice what is needed is the volumetric thermal expansion coefficient β, and only the
linear thermal expansion coefficient α is given. Since β = 3α, we can use the formula

∆V = β∆TV0 = 3αV0∆T

Where V0 is the initial volume, ∆V is the change in volume, and ∆T is the change in temperature.

V0 = 0.082π(0.005) = 1.005 · 10−4 m3

∆T = 60− 10 = 50 K

Thus
∆V = 4.83 · 10−8 m3

(b) The initial thickness is h = 0.005 m. When the disk is heated by 50◦C, its unrestrained height
would be h′ = 0.0050008 m tall. However, we have constrained it: so ∆h = 8 · 10−7 m, and
∆h/h = 1.6 · 10−4. From the Young’s modulus formula, we have

F

A
= Y

∆h

h
= 67 · 109(1.6 · 10−4) = 1.07 · 107 Pa
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5.(∗) The giant hornet Vespa mandarinia japonica preys on Japanese bees. However, if a hornet attempts to
invade a beehive, several hundred of the bees quickly form a compact ball around the hornet to stop it.
They overheat the hornet by quickly raising their body temperatures from the normal 35◦C to 47◦C,
which is lethal to the hornet but not to the bees. Assume the following: 500 bees form a ball of radius
R = 2.0 cm for a time t = 20 min, the primary loss of energy by the ball is by thermal radiation, the
ball’s surface has emissivity ε = 0.80, and the ball has uniform temperature. On average, how much
additional energy must each bee produce during the 20 minutes to maintain 47◦C?

Solution:

• The normal body temperature of the bee is

Ts = 35 + 273 = 308 K

• The new temperature of the bee sphere is

Tb = 47 + 273 = 320 K

• The surface area of the bee sphere is

A = (4π)0.022 = 0.00503 m2

The net rate of additional radiation from the bee sphere will be

Hnet = σεA(T 4
b − T 4

s ) = 0.34 W

where σ is the Stefan Boltzmann constant. The total heat transfer from the ball in 20 minutes will
be

Q = (0.34 W)(20 min)(60 sec/min) = 407 J

Since there were 500 bees contributing, each bee, on average, produced

407

500
= 0.81 J

of additional energy.
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6.(∗∗) Suppose that when Pluto is at its average distance of 39.5 AU from the Sun, it has an average temperature
of −235◦C. Compute the albedo αp of Pluto. Note that 1 AU = 1 Astronomical Unit = distance from
Sun to Earth. The solar constant at Earth is 1367 W/m2.

Solution: We must first calculate the solar constant at Pluto. Since the solar constant at Earth is
1367 W/m2, and Pluto is 39.5 times farther away from the Sun than Earth is, the solar constant at
Pluto is given by

Sp =
1367

39.52
= 0.876 W/m2

Let rp denote the radius of Pluto, and let αp be the albedo of Pluto.

The net rate of heat in will therefore be

Hin = (1− αp)Spr2pπ

and the net rate of heat out will be
Hout = εσ4πr2pT

4

Approximate the emissivity of Pluto by ε ≈ 1

At equilibrium,
Hin = Hout

so
(1− αp)Spr2pπ = σ4πr2pT

4

Thus
1− αp = 4σ(−235 + 273)4/Sp = 0.54

So
αp = 0.46
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7.(∗∗) On a hot day, a cold beverage can is placed on an insulating surface and covered with a wet towel, such
that there is no heat exchange between the surface and the bottom of the can. Assume that the only
energy exchanges taking place are evaporation and radiation through the top and side surfaces. The
towel and beverage have temperature T = 15◦C, the environment has temperature Tenv = 32◦C, and
the towel/beverage package is a cylinder with radius r = 2.2 cm and height h = 10 cm. Approximate
the emissivity as ε = 1, and neglect other energy changes. At what rate ∆m/∆t is the container losing
water mass? The latent heat of vaporization of water is L = 2260 J/g.

Solution:
The total area in consideration will be the area of the top and sides, which is given by

A = πr2 + 2πrh = 0.0153 m2

Then we convert the temperature measure to Kelvin. With Tenv = 305 K and T = 288 K, we will be
able to solve the following equation:

Since we are to assume that the rate of energy lost to evaporation is the same as the net energy
gained via the radiation exchange, we have

L
∆m

∆t
= σεA(T 4

env − T 4)

where the left side is the latent heat of vaporization and the right size is the rate of energy gained
from radiation.
Solving for the rate of evaporation, we obtain

∆m

∆t
= 6.83 · 10−4 g/s
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8.(∗∗) Two containers of equal volume, V1 = V2 = V , are connected by a small tube with a valve, as shown.
Initially, the valve is closed and the two volumes contain a monatomic gas at pressures P1 and P2 and
temperatures T1 and T2, respectively. After the valve is opened, what will be

(a) the final pressure Pf and

(b) the final temperature Tf inside the joint volume?

Neglect heat lost from the system. Express your answers in terms of P1, P2, T1, T2.

V₁, P₁, T₁ V₂, P₂, T₂ 

Solution:

The work for an adiabatic process is

W = nCV (T1 − T2)

This provides an expression for the work done by the gas initially in container one:

W1 = n1CV (T1 − Tf )

The work done by the gas initially in container two is

W2 = n2CV (T2 − Tf )

The net work done by all gases must be zero because there was no external work by any force
(conservation of energy).

W1 +W2 = 0

n1CV (T1 − Tf ) + n2CV (T2 − Tf ) = CV (n1T1 + n2T2)− CV Tf (n1 + n2) = 0

Thus,

Tf =
n1T1 + n2T2
n1 + n2

(8.1)

From the ideal gas law, we have

P1V = n1RT1 (8.2)

P2V = n2RT2 (8.3)

Pf (2V ) = (n1 + n2)RTf (8.4)

Adding (8.2) and (8.3), we obtain

(P1 + P2)V = R(n1T1 + n2T2) (8.5)

Dividing (8.5) by (8.4), we obtain

(P1 + P2)V

2PfV
=
R(n1T1 + n2T2)

RTf (n1 + n2)
(8.6)
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(a) From (8.6), we see that the right hand side is 1 because of (8.1), we obtain

Pf =
P1 + P2

2

(b) For Tf , we can substitute the following two equations into (8.1):
Substituting

n1 =
P1V

RT1

n2 =
P2V

RT2

into (8.1) we obtain

Tf =
T1T2(P1 + P2)

P1T2 + P2T1
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9.(∗∗) Two 50 g ice cubes are dropped into 200 g of water in a thermally insulated container. The water is
initially at 25◦C, and the ice comes directly from a freezer at −15◦C.

(a) What is the final temperature of the mixture at thermal equilibrium?

(b) What is the final temperature if only one ice cube is used?

The latent heat of fusion of water is Lw = 336 J/g. The specific heat capacity of water is cw =
4186J/kg◦C. The specific heat capacity of ice is ci = 2030 J/kg◦C.

Solution:

(a) Two Ice cubes:

• First, we calculate the amount of heat required to cool the water to 0◦C.

Q = (0.2)(4186)(0− 25) = −20930 J

• Next, we calculate the amount of heat required to bring all of the ice to 0◦C.

Q = 2(0.05)(2030)(0− (−15)) = 3045 J

• Finally, we calculate the amount of energy it would take to melt all of the ice.

Q = 2(50)(336) = 33600 J

We can see that
3045 + 33600 = 36645 > 20930

, so then we must conclude that the heat energy that the water loses to the ice will bring all
of the ice to 0◦C, but will not be able to melt it all. Thus we would be left with a mixture of
water and ice at a temperature of 0◦C.

(b) One Ice cube:

• The amount of heat energy to remove from the water to cool it to 0◦C is 20930 J.

• The amount of heat energy to bring one ice cube to 0◦C is 3045/2 = 1522.5 J

• The amount of heat energy required to melt one ice cube is 33600/2 = 16800 J.

We see that
1522.5 + 16800 = 18322.5 < 20930

This means that the water will cool down substantially in heating up, then melting, the ice
cube, but the water will be left at a positive equilibrium temperature.

Now we must solve for the final temperature Tf .

• The heat released by the water bath, as it cools from 25◦C to its final temperature, is

Qw = mwcw(Tf − 25)



Physics 157 Midterm 1 Review Package Page 12 of 26

• The heat absorbed by the ice as it warms, melts, then warms again is

Qi = micw(Tf − 0) + 18322.5

Note that the 18322.5 is the energy required to bring the ice cube to 0◦C and to melt it.

• The net heat transferred in/out of the system must be 0, so

Qw +Qi = mwcw(Tf − 25) +micw(Tf − 0) + 18322.5 = 0

With mw = 0.2 kg, mi = 0.05 kg, cw =4186 J/kg◦C, we solve for Tf and obtain Tf = 2.5◦C.
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10.(∗∗) An insect is caught at the midpoint of a spider-web thread. The thread breaks under a stress of
8.2 · 108 N/m2, and a strain of 2.00. Initially, it was horizontal and had a length of 2.00 cm and a cross-
sectional area of 8.00 · 10−12 m2. Assume that as the thread is stretched, its volume remains constant,
and its cross-sectional area decreases uniformly along the thread. If the weight of the insect puts the
thread on the verge of breaking, what is the insect’s mass?

Solution:
Let A = 8.00 ·10−12 m2 be the initial cross-sectional area of the thread, and l = 0.02 m be the initial
total length.

First we want to calculate Young’s modulus for this material. From Hooke’s law,

F

A′
= Y

∆l

l
(10.1)

we can plug in stress F/A′ = 8.2 · 108 Pa and strain ∆l/l = 2. This gives Young’s modulus as
Y = 4.1 · 108 Pa.

Now we calculate the strain in the string after the insect has landed at its midpoint. Let l′ be the
length of the thread after stretching, thus ∆l = l′ − l. We have

l′ − l
l

= ∆l/l = 2

This yields
l′ = 3l = 3(0.02) = 0.06 m

Now we use the length of the stretched string to find the new cross-sectional area. Let A′ be the
cross sectional area of the string after stretching. Since the volume remains constant, we have

V = 8 · 10−12(0.02) = A′ · 0.06

This gives A′ = 2.67 · 10−12 m2.

Since the maximum stress F/A′ = 8.2 · 108, this gives F = 0.00219 N. Note that this F = T is the
tension in the string.

Since this system is in equilibrium and the force from the string pulls along the direction of the
string, we have

2T sin θ = mg (10.2)

for the vertical direction. Since we know the horizontal distance of the fly from an endpoint, we can
use the Pythagorean Theorem to find the vertical distance h = 0.0283. Thus

sin θ = 0.0283/0.03 = 0.943

Finally, solving for m in (10.2), we get m = 0.421 grams.
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11.(∗∗) Shown below is a 300 kg cylinder that is horizontal. Three steel wires support the cylinder from a ceiling.
Wires 1 and 3 are attached at the ends of the cylinder, and wire 2 is attached at the centre. Initially,
(before the cylinder was put in place) wires 1 and 3 were 2.000 m long and wire 2 was 6 mm longer than
that. Now, (with the cylinder in place) all three wires have been stretched to a cross sectional area of
2.00 · 10−6 m2. Young’s Modulus for steel is Y = 200 · 109 N/m2. What is the tension in,

(a) wire 1?

(b) wire 2?

Solution:
Let T1 be the tension in wire 1, and T2 be the tension in wire 2. The tensions in wires 1 and 3 are
equal, by symmetry.

Also, let A1, A2 be the initial cross-sectional areas of the wires, let d = 0.006 m and l1 + d = l2.

We will denote the lengths and cross-sectional areas of the wires after the cylinder is placed
with primes. Thus l′1 = l′2, and ∆l1 = l′1 − l1, and ∆l2 = l′2 − l2. For cross-sectional areas,
A′1 = A′2 = 2 · 10−6 m2.

Equating ∆l1 = l′1 − l1 and ∆l2 = l′2 − l2 while substituting in l1 + d = l2, we obtain

∆l1 = ∆l2 + d (11.1)

Physically this corresponds to how l1 needs to stretch 0.006 m more to reach the same length.
From equilibrium, we have 2T1 + T2 = 300 · g, and from the constant volume equation we have
A′2l
′
2 = A2l2 and A′1l

′
1 = A1l1.

From Hooke’s Law

T1
A′1

= Y
∆l1
l1

(11.2)

T2
A′2

= Y
∆l2
l2

(11.3)

we rearrange to obtain

∆l1 =
l1T1
A′1Y

(11.4)

∆l2 =
l2T2
A′2Y

(11.5)

Substituting (11.4) and (11.5) into (11.1), we obtain

l1T1
A′1Y

=
l2T2
A′2Y

+ d (11.6)

=
l2T2 + Y dA′2

A′2Y
(11.7)



Physics 157 Midterm 1 Review Package Page 15 of 26

Rearranging (11.7),
A′2l1T1
A′1

= l2T2 + Y dA′2 = l1T1 (11.8)

T1
l1
l2

= T2 +
Y A′2d

l2
(11.9)

From the equilibrium condition,
2T1 + T2 = 300 · g (11.10)

Using (11.9) and (11.10) we get a linear system:{
0.997T1 − T2 = 1196.4

2T1 + T2 = 2940

(a) Adding the two equations,
2.997T1 = 4136.4

T1 = 1380 N

(b) Back-substituting,
T2 = 180 N
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12.(∗∗) A 50 litre tank is connected to a 15 litre tank through a short tube containing a pressure release valve
that will only allow gas to pass from the larger tank to the smaller tank if the pressure in the larger
tank exceeds the pressure in the smaller tank by 117, 300Pa. If at 17◦C the larger tank contains gas at
atmospheric pressure and the smaller tank is evacuated, what will be the pressure P in the smaller tank
when both tanks are at 162◦C?

Solution:
Let P1 be the pressure in the larger tank at 162◦C, and P2 = P be the pressure in the smaller tank
at 162◦C. Since both tanks end up at the same temperature,

T1 = T2 = 162◦C = 435 K

is the common temperature to the two tanks.

Let n1 be the number of moles in the larger tank at 162◦C, and n2 be the number of moles in the
smaller tank at 162◦C.

The volumes of the two tanks are:
V1 = 50 L = 0.05 m3

V2 = 15 L = 0.015 m3

If the smaller tank is evacuated, it will have a pressure significantly lower than the pressure in larger
tank (at 162◦C). Thus we can assume that air will flow across the valve, and at 162◦C,

P1 = P2 + 117300 (12.1)

The total number of moles in the system can be calculated by using the initial amount of moles in
the larger tank (the smaller tank has no moles in it after being evacuated).

ntotal =
P0V0
RT0

(12.2)

=
(101.3 · 103)(0.05)

(8.31)(290)
(12.3)

= 2.1 mol (12.4)

Thus we have
n1 + n2 = 2.1 (12.5)

From the ideal gas law, we have P1V1 = n1RT1, and P2V2 = n2RT2. Plugging in the known variables
into these two equations, we obtain

P1 = 72297n1 (12.6)

P2 = 240990n2 (12.7)

We now solve the system of equations:
P1 = P2 + 117300
n1 + n2 = 2.1
P1 = 72297n1
P2 = 240990n2

P1 = 72297n1

= 72297(2.1− n2)

= 151824− 72297n2
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Since n2 = P2/240990, we have
P1 = 151824− 0.3P2 (12.8)

Rearranging (12.8), P1 +0.3P2 = 151824. Coupling this with (12.1), P1 = P2 +117300, we can solve
the linear system.

P2 + 117300 + 0.3P2 = 151824

1.3P2 = 34524

P2 = 26557 Pa = P

Thus P = 26557 Pa = the pressure in the smaller tank at 162◦C.
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13.(∗∗) A 20.0 g copper ring at 0.0◦C has an inner diameter of D = 2.54000 cm. An aluminum sphere at 100.0◦C
has a diameter of d = 2.54508 cm. The sphere is put on top of the ring, and the two are allowed to come
to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring
at the equilibrium temperature. What is the mass of the sphere?
The coefficient of volume expansion of aluminum is βAl = 7.2 · 10−5/◦C, and the coefficient of volume
expansion of copper is βCu = 5.1 · 10−5/◦C. The specific heat capacity of aluminum is cAl = 910 J/kg◦C,
and the specific heat capacity of copper is cCu = 390 J/kg◦C.

Solution: First, we need the coefficients of linear expansion of each material. We know that in
general for a material, β = 3α.
Thus, αAl = 2.4 · 10−5/◦C and αCu = 1.7 · 10−5/◦C.

Let L′Al be the diameter of the aluminum sphere after it has come to equilibrium temperature. Thus

L′Al = d+ ∆LAl

= d(1 + αAl∆T )

= d(1 + αAl(Tf − 100))

Let L′Cu be the inner diameter of the copper ring after it has come to equilibrium temperature. Thus

L′Cu = D + ∆LCu

= D(1 + αCu∆T )

= D(1 + αCu(Tf − 0))

We know that, at equilibrium temperature, the diameters are the same. Thus L′Al = L′Cu

d(1 + αAl(Tf − 100)) = D(1 + αCu(Tf ))

Solving for Tf , we obtain

Tf =
D − d+ 100dαAl

dαAl −DαCu
= 57.43◦C

Now that we have the equilibrium temperature, we can use the fact that no heat was lost to the
environment to set up the following equation:

The heat lost by the aluminum sphere is given by

QAl = mAlcAl(Tf − 100)
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The heat gained by the copper ring is given by

QCu = mCucCu(Tf − 0)

Since no heat was lost to the environment, QAl +QCu = 0

This yields
mAlcAl(Tf − 100) +mCucCu(Tf − 0) = 0

With Tf known, we solve for

mAl = − mCucCuTf
cAl(Tf − 100)

= 11.56 · 10−3 kg
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14.(∗ ∗ ∗) A sample of gas undergoes a transition from an initial state a to a final state b by three different paths,
as shown in the P -V diagram, where Vb = 5.00Vi. The energy transferred to the gas as heat in process
1 is 10PiVi.

(a) How many degrees of freedom does the sample of gas have?

(b) Find the energy transferred to the gas as heat in process 2.

(c) Find the change in internal energy that the gas undergoes in process 3.

Express your answers in terms of Pi, Vi.

506 CHAPTE R 18 TE M PE RATU R E, H EAT, AN D TH E F I RST LAW OF TH E R MODYNAM ICS

HALLIDAY REVISED

80 Figure 18-55a shows a cylinder containing gas and closed by a
movable piston.The cylinder is kept submerged in an ice–water mix-
ture.The piston is quickly pushed down from position 1 to position 2
and then held at position 2 until the gas is again at the temperature of
the ice–water mixture; it then is slowly raised back to position 1.
Figure 18-55b is a p-V diagram for the process. If 100 g of ice is
melted during the cycle, how much work has been done on the gas?

86 A glass window pane is exactly 20 cm by 30 cm at 10°C. By
how much has its area increased when its temperature is 40°C, as-
suming that it can expand freely?

87 A recruit can join the semi-secret “300 F” club at the
Amundsen–Scott South Pole Station only when the outside tem-
perature is below !70°C. On such a day, the recruit first basks in a
hot sauna and then runs outside wearing only shoes. (This is, of
course, extremely dangerous, but the rite is effectively a protest
against the constant danger of the cold.)

Assume that upon stepping out of the sauna, the recruit’s skin
temperature is 102°F and the walls, ceiling, and floor of the sauna
room have a temperature of 30°C. Estimate the recruit’s surface area,
and take the skin emissivity to be 0.80. (a) What is the approximate
net rate Pnet at which the recruit loses energy via thermal radiation ex-
changes with the room? Next, assume that when outdoors, half the re-
cruit’s surface area exchanges thermal radiation with the sky at a tem-
perature of !25°C and the other half exchanges thermal radiation
with the snow and ground at a temperature of !80°C.What is the ap-
proximate net rate at which the recruit loses energy via thermal radia-
tion exchanges with (b) the sky and (c) the snow and ground?

88 A steel rod at 25.0°C is bolted at both ends and then cooled.
At what temperature will it rupture? Use Table 12-1.

89 An athlete needs to lose weight and decides to do it by “pump-
ing iron.” (a) How many times must an 80.0 kg weight be lifted a dis-
tance of 1.00 m in order to burn off 1.00 lb of fat, assuming that that
much fat is equivalent to 3500 Cal? (b) If the weight is lifted once
every 2.00 s, how long does the task take?

90 Soon after Earth was formed, heat released by the decay of ra-
dioactive elements raised the average internal temperature from 300
to 3000 K, at about which value it remains today. Assuming an aver-
age coefficient of volume expansion of 3.0 " 10!5 K!1, by how much
has the radius of Earth increased since the planet was formed?

91 It is possible to melt ice by rubbing one block of it against an-
other. How much work, in joules, would you have to do to get 1.00
g of ice to melt?

92 A rectangular plate of glass initially has the dimensions 0.200
m by 0.300 m. The coefficient of linear expansion for the glass is
9.00 " 10!6/K.What is the change in the plate’s area if its tempera-
ture is increased by 20.0 K?

93 Suppose that you intercept 5.0 " 10!3 of the energy radiated
by a hot sphere that has a radius of 0.020 m, an emissivity of 0.80,
and a surface temperature of 500 K. How much energy do you in-
tercept in 2.0 min?

94 A thermometer of mass 0.0550 kg and of specific heat 0.837
kJ/kg # K reads 15.0°C. It is then completely immersed in 0.300 kg
of water, and it comes to the same final temperature as the water. If
the thermometer then reads 44.4°C, what was the temperature of
the water before insertion of the
thermometer?

95 A sample of gas expands from
V1 $ 1.0 m3 and p1 $ 40 Pa to V2 $
4.0 m3 and p2 $ 10 Pa along path B
in the p-V diagram in Fig. 18-57. It is
then compressed back to V1 along ei-
ther path A or path C. Compute the
net work done by the gas for the
complete cycle along (a) path BA
and (b) path BC.

Ice and
water

(a)

V1V2

Volume

Pr
es

su
re

Start

(b)

1

2

Fig. 18-55 Problem 80.

81 A sample of gas under-
goes a transition from an initial
state a to a final state b by three
different paths (processes), as
shown in the p-V diagram in Fig.
18-56, where Vb $ 5.00Vi. The en-
ergy transferred to the gas as heat
in process 1 is 10piVi. In terms of
piVi, what are (a) the energy
transferred to the gas as heat in
process 2 and (b) the change in
internal energy that the gas un-
dergoes in process 3?

82 A copper rod, an aluminum rod, and a brass rod, each of 6.00
m length and 1.00 cm diameter, are placed end to end with the alu-
minum rod between the other two. The free end of the copper rod
is maintained at water’s boiling point, and the free end of the brass
rod is maintained at water’s freezing point.What is the steady-state
temperature of (a) the copper–aluminum junction and (b) the alu-
minum–brass junction?

83 The temperature of a Pyrex disk is changed from 10.0°C
to 60.0°C. Its initial radius is 8.00 cm; its initial thickness is 0.500
cm. Take these data as being exact. What is the change in the vol-
ume of the disk? (See Table 18-2.)

84 (a) Calculate the rate at which body heat is conducted through
the clothing of a skier in a steady-state process, given the following
data: the body surface area is 1.8 m2, and the clothing is 1.0 cm thick;
the skin surface temperature is 33°C and the outer surface of the
clothing is at 1.0°C; the thermal conductivity of the clothing is 0.040
W/m #K. (b) If, after a fall, the skier’s clothes became soaked with wa-
ter of thermal conductivity 0.60 W/m #K, by how much is the rate of
conduction multiplied?

85 A 2.50 kg lump of aluminum is heated to 92.0°C and
then dropped into 8.00 kg of water at 5.00°C. Assuming that the
lump–water system is thermally isolated, what is the system’s equi-
librium temperature?

SSM

SSM

SSM

pi/2

pi

3pi/2

Vi Vb
V

a
b

2
1

3

p

Fig. 18-56 Problem 81.
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V
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B

A
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Fig. 18-57 Problem 95.
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Solution:

(a) We will first try and get more data about path 1. Since it is an isobaric process because pressure
is constant, the work done will be

W = Pi(Vb − Vi) = 4PiVi

From the ideal gas law Vi/Ti = Vb/Tb, we can find that

Tb = 5Ti

∆T = 4Ti

The change in internal energy will be

∆U = nCv∆T

= nCV (4Ti)

= 4CV (nTi)

= 4CV (PiVi/R)

Then we can use the first law of thermodynamics to find a relationship between CV and R.

∆U = Q−W

4CV PiVi/R = 10PiVi − 4PiVi = 6PiVi

CV = 3R/2

Thus we conclude that it is a monatomic gas and has 3 degrees of freedom. Note that the three
degrees of freedom are simply movement in the x, y, and z directions.
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(b) The work for the first segment of path 2 can be found using the area under the line. We use the
formula for the area of a trapezoid.

W = (Vb − Vi)(Pi + 3Pi/2)/2 = 5PiVi (14.1)

The change in temperature in the first segment of path 2 can be found using the ideal gas law.
We have

PiVi/Ti = PbVb/Tb(5Vi)(3Pi/2)/(T )

T = 15Ti/2

This means that ∆T = 13/2Ti.

The change in internal energy will be

∆U = nCV (13/2Ti) (14.2)

= (13/2)CV PiVi/R (14.3)

= (13/2)(3/2)PiVi (14.4)

= 39PiVi/4 (14.5)

We can use the first law of thermodynamics to find that ∆Q = ∆U +W for this first segment
of the path (using (14.1) and (14.5)) is

39PiVi/4 + 5PiVi = 59PiVi/4 (14.6)

For the second (vertical) segment of the path, there is no work done. Thus the heat added (at
constant volume) will depend only on the temperature difference. We know that the temperature
at b is 5Ti, so then the change in heat energy for this second segment will be

Q = nCV (−5/2Ti) = −15PiVi/4 (14.7)

Adding these two heats, we find that the total change in heat energy over path 2 is

∆Q = 59PiVi/4− 15PiVi/4 = 11PiVi

(c) Internal energy is independent of path, so then

∆U = nCV (4Ti) = 6PiVi
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15.(∗ ∗ ∗) Two rods are perfectly constrained between rigid constraints, as shown. Initially, at 15◦C, they have
no stress in them. Rod A has a cross sectional area of 40 cm2, and rod B has a cross sectional area of
50 cm2. Rod A is 30 cm long, and rod B is 20 cm long. Rod A has Young’s modulus of 1010 Pa, and rod
B has Young’s modulus of 2 · 109 Pa. Rod A has thermal expansion coefficient of 2.4 · 10−5/◦C, and rod
B has thermal expansion coefficient of 5.7 · 10−6/◦C. If the temperature of both is raised to 40◦C,

(a) What will be the stress in rod A?

(b) What will be the stress in rod B?

(c) What will be the length of rod A?

(d) What will be the length of rod B?

A B

Solution: Assume that both rods are under compression. The forces FA and FB at the interface
between the rods are in opposite directions, and are of equal magnitude, so FA = −FB . If both
rods are under compression, FA is pointing in the leftwards direction, and FB is pointing in the
rightwards direction. In each rod, there will be elongation/compression due to two sources:

• heating

• compressive forces

Consider the change in length δA of rod A. There will be negative contribution due to FA, and a
positive contribution due to the thermal expansion. Since FA is already negative (pointing in the
leftward direction) we do not need to introduce an additional negative sign in front of it.

δA = αALA∆T +
FALA
AAYA

(15.1)

Consider the change in length δB of rod B. There will be negative contribution due to FB , and a
positive contribution due to the thermal expansion. Since FB is positive (pointing in the rightward
direction), we need to introduce a negative sign in front of it.

δB = αBLB∆T − FBLB
ABYB

(15.2)

Since the rods are constrained between rigid constraints, the total combined length of the rods will
not change. We have

δA = −δB (15.3)

Combining equations (15.1) and (15.2) via (15.3), we have

αALA∆T +
FALA
AAYA

= −
(
αBLB∆T − FBLB

ABYB

)
(15.4)
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Plugging in FA = −FB , and rearranging,

FA

(
LA
AAYA

+
LB

ABYB

)
= −∆T (αALA + αBLB) (15.5)

Isolating FA:

FA =
−∆T (αALA + αBLB)

LA

AAYA
+ LB

ABYB

(15.6)

Plugging in the values gives

FA =
−25(2.4 · 10−5 · 0.3 + 5.7 · 10−6 · 0.2)

0.3
0.004·1010 + 0.2

0.005·2·109
= −7581 N

Since the force FA came out negative, our initial assumption that both rods were under compressive
stress is correct.

(a) The (compressive) stress in rod A can then be calculated as

7581

0.004
= 1.89 · 106 Pa

(b) The (compressive) stress in rod B is

7581

0.005
= 1.52 · 106 Pa

(c) Plugging the stresses back into the formula for δA gives

δA = 2.4 · 10−5 · 0.3 · 25− 7581 · 0.3
0.004 · 1010

= 1.23 · 10−4 m

Then the final length of rod A is

LA + δA = 0.300123 m

(d) Since δB = −δA, we can calculate

δB = −1.23 · 10−4 m

Then the final length of rod B is

LB + δB = 0.199877 m
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16.(∗ ∗ ∗) The figure shows the cross section of a wall made of three layers. The layer thicknesses are L1, L2 =
0.700L1, and L3 = 0.350L1. The thermal conductivities are k1, k2 = 0.900k1, and k3 = 0.800k1. The
temperatures at the left and right sides of the wall are TH = 30.0◦C and TC = −15.0◦C. Thermal
conduction is steady.

(a) What are the temperatures at each interface? (where two layers meet)

(b) If k2 were, instead, equal to 1.1k1, would the rate at which energy is conducted through the wall
be greater than, less than, or the same as previously?

(c) Using the k values from part (b), what would be the values of the temperatures at the two interfaces?

(d) Using the k values from part (a), if the thermal conductivity of layer 1 is k1 = 50 W/m ·K, and the
thickness of layer 1 is L1 = 60 cm, what are the R values of each of the walls?
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Fig. 18-49 Problem 64.
(Alain Torterotot/Peter Arnold, Inc.)

the right side. In 2.0 min, 10 J is conducted at a constant rate from
the right side to the left side. How much time would be required to
conduct 10 J if the rods were welded side to side as in Fig. 18-44b?

••60 Figure 18-45 shows the cross
section of a wall made of three layers.
The layer thicknesses are L1, L2 !
0.700L1, and L3 ! 0.350L1. The thermal
conductivities are k1, k2 ! 0.900k1, and k3

! 0.800k1. The temperatures at the left
and right sides of the wall are TH ! 30.0°C
and TC !"15.0°C, respectively. Thermal
conduction is steady. (a) What is the tem-
perature difference #T2 across layer 2 (be-
tween the left and right sides of the layer)? If k2 were, instead, equal to
1.1k1, (b) would the rate at which energy is conducted through the
wall be greater than, less than, or the same as previously, and (c)
what would be the value of #T2?

••61 A tank of water has
been outdoors in cold weather, and
a slab of ice 5.0 cm thick has formed
on its surface (Fig. 18-46). The air
above the ice is at "10°C. Calculate
the rate of ice formation (in cen-
timeters per hour) on the ice slab.
Take the thermal conductivity of ice
to be 0.0040 cal/s $ cm $ C° and its
density to be 0.92 g/cm3. Assume no
energy transfer through the tank
walls or bottom.

••62 Leidenfrost effect. A
water drop that is slung onto a skil-
let with a temperature between
100°C and about 200°C will last
about 1 s. However, if the skillet is
much hotter, the drop can last sev-
eral minutes, an effect named after
an early investigator.The longer life-
time is due to the support of a thin
layer of air and water vapor that sep-
arates the drop from the metal (by
distance L in Fig. 18-47). Let L !
0.100 mm, and assume that the drop is flat with height h ! 1.50 mm
and bottom face area A ! 4.00 % 10"6 m2. Also assume that the
skillet has a constant temperature Ts ! 300°C and the drop has a
temperature of 100°C. Water has density r ! 1000 kg/m3, and the
supporting layer has thermal conductivity k ! 0.026 W/m$K. (a) At
what rate is energy conducted from the skillet to the drop through
the drop’s bottom surface? (b) If conduction is the primary way en-
ergy moves from the skillet to the drop, how long will the drop last?

••63 Figure 18-48 shows (in cross section) a wall consisting of

SSM

four layers, with thermal conductivities k1 ! 0.060 W/m $K, k3 !
0.040 W/m $ K, and k4 ! 0.12 W/m $ K (k2 is not known). The layer
thicknesses are L1 ! 1.5 cm, L3 ! 2.8 cm, and L4 ! 3.5 cm (L2 is
not known). The known temperatures are T1 ! 30°C, T12 ! 25°C,
and T4 ! "10°C. Energy transfer through the wall is steady. What
is interface temperature T34?

••64 Penguin huddling. To withstand the harsh weather of
the Antarctic, emperor penguins huddle in groups (Fig. 18-49).
Assume that a penguin is a circular cylinder with a top surface area
a ! 0.34 m2 and height h ! 1.1 m. Let Pr be the rate at which an in-
dividual penguin radiates energy to the environment (through the
top and the sides); thus NPr is the rate at which N identical, well-sepa-
rated penguins radiate. If the penguins huddle closely to form a hud-
dled cylinder with top surface area Na and height h, the cylinder radi-
ates at the rate Ph. If N ! 1000, (a) what is the value of the fraction
Ph/NPr and (b) by what percentage does huddling reduce the total ra-
diation loss?

TH TC

k1 k2 k3

L1 L2 L3

Fig. 18-45
Problem 60.

Air

Ice

Water

Fig. 18-46 Problem 61.

Water drop

Skillet

h
L

Fig. 18-47 Problem 62.

T1 T4T34

L1 L2 L3 L4

k1 k2 k3 k4

T12 T23

Fig. 18-48 Problem 63.

••65 Ice has formed on a shallow pond, and a steady state has been
reached, with the air above the ice at "5.0°C and the bottom of the
pond at 4.0°C. If the total depth of ice & water is 1.4 m, how thick is
the ice? (Assume that the thermal conductivities of ice and water are
0.40 and 0.12 cal/m $C° $ s, respectively.)

•••66 Evaporative cooling of beverages. A cold bever-
age can be kept cold even on a warm day if it is slipped into a
porous ceramic container that has been soaked in water. Assume
that energy lost to evaporation matches the net energy gained via
the radiation exchange through the top and side surfaces. The con-
tainer and beverage have temperature T ! 15°C, the environment
has temperature Tenv ! 32°C, and the container is a cylinder with
radius r ! 2.2 cm and height 10 cm. Approximate the emissivity as
' ! 1, and neglect other energy exchanges. At what rate dm/dt is
the container losing water mass?

Additional Problems
67 In the extrusion of cold chocolate from a tube, work is
done on the chocolate by the pressure applied by a ram forcing
the chocolate through the tube. The work per unit mass of ex-
truded chocolate is equal to p/r, where p is the difference be-
tween the applied pressure and the pressure where the choco-
late emerges from the tube, and r is the density of the chocolate.
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Solution:

(a) We know that the rate of heat transfer across each layer must be equal to each other and to the
rate across the entire wall. Thus H1 = H2 = H3.
Let A be the cross sectional area common to the three walls, and let T12 be the temperature
at the interface between walls 1 and 2, and let T23be the temperature at the interface between
walls 2 and 3.
We have

H1 =
Ak1(TH − T12)

L1

H2 =
Ak2(T12 − T23)

L2

H3 =
Ak3(T23 − TC)

L3

Since it is a steady thermal conduction,

H1 = H2 = H3

Substituting in our equations,

Ak1(TH − T12)

L1
=
Ak2(T12 − T23)

L2
=
Ak3(T23 − TC)

L3

We can do some cancellations to obtain

k1(TH − T12)

L1
=

0.9k1(T12 − T23)

0.7L1
=

0.8k1(T23 − TC)

0.35L1
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(TH − T12)

1
=

9(T12 − T23)

7
=

16(T23 − TC)

7

This provides us with a system of equations:{
16T12 − 9T23 = 210

25T23 − 9T12 = −240

Solving yields T12 = 9.7◦C, and T23 = −6.1◦C.

(b) A greater heat conductivity constant would increase the rate of conductive heat transfer.

(c) From
H1 = H2 = H3

Substituting in new values,

Ak1(TH − T12)

L1
=
Ak2(T12 − T23)

L2
=
Ak3(T23 − TC)

L3

We would obtain

k1(TH − T12)

L1
=

1.1k1(T12 − T23)

0.7L1
=

0.8k1(T23 − TC)

0.35L1

and thus
7(TH − T12) = 11(T12 − T23) = 16(T23 − TC)

Solving the system of equations we obtain T12 = 8.3◦C, and T23 = −5.5◦C

(d) The R value (thermal resistance) of each wall is given by R = L/k. Thus we can calculate

R1 = L1/k1 = 0.012 m2 K/W

R2 = L2/k2 = 9.3 · 10−3 m2 K/W

R3 = L3/k3 = 5.25 · 10−3 m2 K/W



Physics 157 Midterm 1 Review Package Page 26 of 26

Useful Constants and Conversion Ratios:
R = Ideal Gas constant = 8.31451 J/molK, 1 atm = 1.013× 105 Pa, 1 atm · litre = 101.3 J
σ = Stefan-Boltzmann constant = 5.6704× 10−8 W/m2K4, γair = 1.4, CVair

= 20.8 J/molK
ρwater = Density of water = 1 gram/cm3 = 1000 kg/m3

Mechanics:
Linear Motion: x = x0 + 1

2 (v0 + v)t, x = x0 + v0t+ 1
2at

2, v = v0 + at, v2 = v20 + 2a(x− x0)

Circular Motion: ac =
v2

r

Forces: F = ma =
d

dt
p, Friction: |F| = µ|N|, Spring: F = −kx, Damping: F = −bv

Buoyant |F| = ρV g

W = Work =

∫ rf

ri

F · dr = F ·∆r, K = 1
2mv

2, ∆Ugravity = mg∆h, ∆Uspring = 1
2kx

2

P =
dW

dt
= F · v

Thermodynamics:

Thermal Expansion: ∆L = αL0∆T , Stress and Strain:
|F|
A

= Y
∆L

L
, Ideal Gas Law: PV = nRT

Kav = 3
2kT

Thermal Conductivity: I =
∆Q

∆t
= kA

∆T

∆x
Black Body Radiation: P = eσA(T 4

B − T 4
S , λmaxT = 2.8977685× 10−3m ·K

Solar Irradiation: P = (1− α)Scr
2π

Internal Energy: U = nCV T
First Law of Thermodynamics: dQ = dU + dW For an ideal gas, dW = PdV
Work for an isothermal process W = nRT ln(Vf/Vi)
Work for an adiabatic expansion TV γ−1 = constant, if the number of moles is constant PV γ = C
where C is a constant and γ = CP /CV

Work for adiabatic process: W =

∫ V2

V1

PdV = C

∫ V2

V1

dV

V γ
=

C

1− γ
(V 1−γ

2 − V 1−γ
1 )

Heat Transfer: Q = mc∆T , Q = mL, CP = CV +R, CV =
f

2
R, where f = degrees of freedom.

f = 3 for monatomic and f = 5 for diatomic.

dS =
dQ

T

e = W/QH , COPCooling =
|QC |
|W |

, COPHeating =
|QH |
|W |

, eCarnot = 1− TC
TH

Integrals:∫
xndx =

xn+1

n+ 1
+ C, n 6= 1

∫
x−1dx = lnx+ C

Trigonometry:

sin θ1 + sin θ2 = 2 cos

(
θ1 − θ2

2

)
sin

(
θ1 + θ2

2

)
Area and Volume:
Surface Area of a sphere: A = 4πr2. Lateral surface area of a cylinder: A = 2πrl.
Area of a circle: A = πr2. Volume of a cylinder: V = lπr2 Volume of a sphere: V = 4

3πr
3

Oscillations:

ω = 2πf , T =
1

f
, x = A cos(ωt+ φ), ω2 =

k

m

Damped Oscillations: x = A0e
− bt

2m cos(ωt+ φ), where ω =

√
w2

0 −
(

b

2m

)2

, Q = 2π
E

∆E

Energy for damped E = E0e
− bt

m


