Physics 157 Midterm 2 Review Package — Solutions

UBC Engineering Undergraduate Society

Attempt questions to the best of your ability. Problems are ranked in difficulty as () for easy, (xx) for
medium, and (x % *) for difficult. Difficulty is subjective, so do not be discouraged if you are stuck on a (*)
problem.

Solutions will be posted at: https://ubcengineers.ca/tutoring/

If you believe that there is an error in these solutions, or have any questions, comments, or suggestions
regarding EUS Tutoring sessions, please e-mail us at: tutoring@ubcengineers.ca. If you are interested in
helping with EUS tutoring sessions in the future or other academic events run by the EUS, please e-mail
vpacademicQubcengineers.cal

Want a warm up? Short on study time? Want a challenge?
These are the easier problems | These cover most of the material | These are some tougher questions

Some of the problems in this package were not created by the EUS. Those problems originated from one
of the following sources:
e Fundamentals of Physics / David Halliday, Robert Resnick, Jearl Walker. — 9th ed.
e Exercises for the Feynman Lectures on Physics / Matthew Sands, Richard Feynman, Robert Leighton.
e A Student’s Guide to Entropy / Don Lemons
All solutions prepared by the EUS.

EUS Health and Wellness Study Tips

e Eat Healthy—Your body needs fuel to get through all of your long hours studying. You should eat
a variety of food (not just a variety of ramen) and get all of your food groups in.

e Take Breaks—Your brain needs a chance to rest: take a fifteen minute study break every couple of
hours. Staring at the same physics problem until your eyes go numb wont help you understand the
material.

e Sleep—Weve all been told we need 8 hours of sleep a night, university shouldnt change this. Get to
know how much sleep you need and set up a regular sleep schedule.

E\US

Good Luck!


https://ubcengineers.ca/tutoring/
mailto:tutoring@ubcengineers.ca
mailto:vpcademic@ubcengineers.ca
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(x) 1. A constant current of 10 A flows through a resistor of 10 Q which is kept at the constant temperature
of 10°C.

(a) What is the rate of entropy change dSg/dt of the resistor?

(b) What contribution dSy/dt is made to the entropy change of the universe?

Solution:
(a) We know that entropy is defined by
d
dSp = 762
If we’re interested in time rate of change, we can take the derivative with respect to time which
yields
dSg 1 dQ
dt T dt

because the temperature T is constant. Note that dQ/dt is the power dissipated by the resistor.
Since P = IV = I?R (because of Ohm’s law), we have

P =10%-10 = 1000 W

So then we might wrongly conclude that

dSr 1000

Wr_ 0 _ g K
& a0 b3/

This is false because, since the resistor is kept at a constant temperature, it will radiate that
energy away. So then the net entropy change in the resistor is actually

Sy
dt

(b) The contribution to the universe will then be

dSy
=2V —3, K.
o =353/
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(x) 2. The Solar Constant at Earth’s atmosphere is 1390 W/m?. The radius of the Sun is 695 - 10m, and the
average distance between the Earth and the Sun is 150 - 10° m. Find

(a) The temperature of the Sun (assuming it radiates as a black-body)

(b) The equilibrium temperature of Earth

(a)

Solution:

We start by viewing a sphere centered at the sun and with a radius equal to the distance
between earth and the sun (rg). We know that the Solar Constant (in W/m?2) is just the Sun’s
total power divided by the surface area of this sphere.

P =1390 - (47r%) = 3.93 - 10°° W

From the Stefan-Boltzmann Law: P = AgeT?. Using the radius of the Sun (rg), and knowing
that e = 1 for a black body, we get

P = (47r2)oT4
3.93.1026\/*
Ts = (2> = 5810K
(4mrg)o
Where o is the Stephan-Boltzmann constant.

The equilibrium temperature of Earth (Tg) occurs when the radiation absorbed from the Sun
equals the radiation emitted by the Earth. For absorption, we consider the cross-sectional area
of the Earth: a 2-dimensional disk. For emission, we use the entire surface area of the Earth.
We have the power balance

(1 — a)r(1390) = 4rrsoeT s

Here, let’s assume that e = 1 and « = 0 (full absorbtion). Simplifying this equation and solving

for Tg gives us
1 1/4
Ty = (390) = 280K
4o
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(x*) 3. Pluto’s diameter is approximately 2000km and it is is 40 times farther away from the Sun than the
Earth. The solar constant at the Earth’s atmosphere is 1390 W/m?. Assume emissivity is 1. The albedo
of Pluto is 0.4.

(a) What is the total power absorbed by Pluto?
(b) What is the temperature of Pluto?

(c¢) Assume that the atmospheric pressure is half that of Earth’s. What is the density of the molecules
on Pluto’s surface? (Hint: use R = 8.2 - 10~° m®atm/k/mol)

Solution:

(a) We know that the intensity of the Sun’s radiation at any distance is the total power of the Sun
divided by the surface area of a sphere whose radius is equal to that distance. Applying this,
we see

Ps = 1390(4nr%) = Ip(4mrd)
1390(47r2) 139012,
Ip = =

= = 0.869 W /m?
41, 40%r%, /m

We use the equation Pp = Ipm“%(l —ap), where ap is the albedo. We get
Pp = 0.8697(1 - 10%)2(0.6) = 1.637 - 1012 W
(b) We know that the power in equals the power out:

Pp = P, = 4nrdoTh

Ipnri(l —a 1/4 Ip(l — 1/4
Tp = (P:’;(TQO P)> = (P(4O aP)) — 38.9K
P

(¢) We know the density of molecules will just be the number of molecules divided by the volume
they occupy. We can rearrange PV = nRT to get

n_F
V.  RT
We multiply both sides by Avogadro’s number, N, = 6.02 - 1023

nN, 0.5 atm(6.02 - 10%3)
= PN,RT =
R 8.2-1075(38.9K)

density = = 9.44 - 10%° molecules/m?
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(x) 4. One mole of gas in a container is initially at a temperature 127°C. It is suddenly expanded to twice
its initial volume without heat exchange with the outside. Then it is slowly compressed, holding the
temperature constant, to the original volume. The final temperature is found to be —3° C.

(a) What is the coefficient v of the gas?
(b) What change AS in entropy, if any, has occurred?

(a)

Solution:

For any pair of T, V during an adiabatic process,
ToVy ' =TV 7!
So then since Ty = 400K and T = 270 K, we have

400Vt = 270(2V4)7 1

Thus 400/270 = 271, Solving for v, we obtain

v =1.57

Adiabatic Process

During the adiabatic process, there is no change in entropy.

dq
ds = —
T
and since d@ = 0, we conclude that dS = 0.
Isothermal Process
For the isothermal process, AQ = AW because internal energy stays constant as long as

temperature stays constant. Thus

AQ =nRTIn Yo —270R1n(2)
2W

AQ
AS = =2
S 270

= —RIn(2)
- 576J/K
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(¥) 5. Determine which (if either) of the systems shown demonstrates simple harmonic motion. Why or why
not?

/////////////

9 <1
9
4 —the
unstretched
Icngth of the spring W
smooth channel rolls without slipping

(a) (b)

Solution: The following diagrams show the forces on the objects

LLLLLLLLGLLLLL

b

X

We know that a mass will execute simple harmonic motion if the restoring force is linearly propor-
tional to its displacement, i.e.
ma + kx =0 (5.1)

for mass m and some constant k. Therefore we will construct physical models of both scenarios,
and check if the restoring force creates an equation in the form of (11.1).

(a) Let |F| be the magnitude of the spring force. Then, if we let

I'=1/12 + a? (5.2)

where « is the horizontal displacement from equilibrium, we see that |F| = k(I — ly). (k is the
spring constant)
If we let 6 be the angle between the vertical and the spring, then

F, = —|F|sin0 (5.3)
= —k(l'—1p)sin® (5.4)

We will not consider forces in the vertical direction because the mass is constrained to move
only in the horizontal direction.
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Since sind = x /', we can plug it into (11.4) to obtain

k(' —lg)x
poo M-ws 55

T .0
CRVBE L) 5.
VI3 + 2?2

This expression is clearly not linear with respect to x. Thus the object will not execute simple
harmonic motion.

(b) If we let = be the horizontal distance from equilibrium, then sin@ = x/R. Since the angle 0
is small, the vertical acceleration is negligible (almost 0). This means that the normal force

IN| ~ mg.
F, = —|NJsinf (5.7)
myx
= -m (5.8)

Thus the mass will execute simple harmonic motion for small angles because the restoring force
is linear in z (for small angles).
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(x%) 6. A gas of coefficient v in a cylinder of volume Vj at temperature T and pressure Py is compressed slowly
and adiabatically to volume V;/2. After being allowed to come to temperature equilibrium (7p) at this
volume, the gas is then allowed to expand slowly and isothermally to its original volume Vj. In terms of
Py, Vi, v, what is the net amount of work W the piston does on the gas?

Solution: The work is done in two processes. First the adiabatic compression, then the isothermal
expansion.

Adiabatic Compression

The work for an adiabatic process is

C 1— 1—
= ﬁ(Vg TV,
where C' = PV, with values of P and V at any particular time during the process. For convenience
we choose C' = PyV'.

Plugging in Vo = V;/2 and V; = V) we obtain

PVy (Ve _
Ly (2?—7 O (6.1)
RV,
= %(27—1—1) (6.2)

Note that this work is the work done by the gas, and thus is negative. Since we are looking for the
work done by the piston, we instead want the negative of (4.2), i.e.

)

1%
1 -1

(271 —1) (6.3)

Isothermal Expansion

For the expansion (isothermal), the work is given by
W = nRTIn(V;/V;)
Plugging in the given values, we obtain

w

nRTy In(Vo/(Vo/2))
P()VO ln(2)

Note that this work is positive because the gas did positive work. Since we are looking for the work
done by the piston, we want
W2 = —P()V() 111(2) (64)

Adding it up

Adding these two works together we obtain the work done by the piston on the gas:

Z W = Wi+ W, (6.5)

e (2:1__11 _ 1n(2)> (6.6)
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(x*) 7. An ideal gas with coefficient v, is initially at the condition Py = 1 atm, Vj = 1 litre, Ty = 300 K. It is
then:

(i) Heated at constant V until P = 2 atm.

(ii) Expanded at constant P until V' = 2 litres.
(iii) Cooled at constant V until P = 1 atm.
(iv) Contracted at constant P until V' =1 litre.

a) Draw a P-V diagram for this process.

(a)
(b)
()

)

(d) What is the total heat input AQ in steps (i) and (ii) in terms of ~?

What work W is done per cycle?

What is the maximum temperature 1,,, the gas attains?

Solution:

P (atm)

V(L
| 5 >V (L)

(a) See figure for P-V diagram.

(b) For an isochoric process (processes (i), (iii)) there is no work done. Therefore we just sum up
the works from processes (ii) and (iv). For process (ii), work is given by

Wi = PAV =2(2—1) =2atm - litre = 202.6 J
For process (iv), work is given by
Wi, = PAV =1(1 —2) = —1atm - litre = —101.3J
Summing up the works, we obtain

W = Wi+ Wi+ Wi+ Wiy
0+ 202.6 +0—101.3
101.3 J/cycle
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(¢) Maximum temperature will be attained when the gas is at largest volume and highest pressure.
This will be after process ii (when P =2 and V' = 2). Since

—— = constant
T

we can calculate the constant with the initial temperature, pressure, and volume values as

PyVy 1
T, 300
Plugging in the values P = 2 and V = 2, we obtain
1 2.2
% - Tmax
Thus
Traz = 1200K

(d) We can use the specific heat capacity equations to find the total heat input. Process i is
isochoric, so

Qi = nCy AT
Process ii is isobaric, so
Qi = nCpAT’
The changes in temperature for each process are
AT, = 300K
and
AT; = 600K
(From the ideal gas law). Thus
AQ = Qi+ Qx (7.1)
= nCVATl + nCpATﬁ (72)
= 300nCy + 600nCp (7.3)
We want to find a value for n to plug into (5.3). From the ideal gas law,
POV() = nRTo = ’I’L(Cp — CV)TO (74)
we solve for
P 101.3 5
To(Cp — Cv) 300(0}9 — Cv) ’
Plugging (5.5) into the expression for AQ (5.3), we obtain
101.3 101.3
A = 300Cy ————— 4+ 600Cp———— 7.6
@ V300(Cr — vy TP 300(Ch = Cy) (7.6)
Cy Cp
= 101.3 2 7.7
(cp—cv+ cp—cv> (7.7)
2Cp + Cy
= 1013 =——— 7.8
(5=er) &

Dividing numerator and denominator by Cy , we obtain

2+ 1
AQ:lOl.S( i )J
v—1




()
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8. The first Earth settlers on the moon will have great problems in keeping their living quarters at a
comfortable temperature. Consider the use of Carnot engines for climate control. Assume that the
temperature during the moon-day is 100°C, and during the moon-night is —100° C The temperature
of the living quarters is to be kept at 20°C. The heat conduction rate through the walls of the living
quarters is 0.5 kW per degree of temperature difference.

(a) Find the power P,y which has to be supplied to the Carnot engine during the day, and
(b) the power Pyhjgns which must be supplied at night.

Solution:

(a) During the daytime, the Carnot engine will be run in reverse, because it is cooling (refriger-
ating) the living quarters. This means that we put in work, and heat is taken from a cold
reservoir (indoors) and sent to a warm reservoir (outdoors).

The equation for coefficient of performance for a refrigerator is

Qcl  1Qc|

COP = =
W |Qul—1Qc|
In a Carnot engine,
Qcl _ [T
Qul Tl
Thus we arrive at the coeflicient of performance for a Carnot refrigerator,
|Qc|
COP _ 8.1
Qul - Qc] 54
1—1Qc|/1Qu]|
Tc
Ty —Tc &)
Another way to write the coefficient of performance is
t H

Wi wijt P

where H is the heat current through the walls of the living quarters and P is the power supplied
to the engine.

For the daytime, we have T = 293 K, and Ty = 373 K, and H = 40 kW. Combining
(6.3) and (6.4), we obtain
H Tc

Pday _TH_TC

(8.5)
Plugging in the appropriate variables into (6.5) and solving for Pyay,

Paay = 10.9kW

(b) For the night time, we have Tc = 173 K, and Ty = 293 K, and H = 60 kW. Because we want
to heat the interior this time, we will run the Carnot engines forward.
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We have two expressions for efficiency:

Tc

=1-—=041 .
e 7 =0 (8.6)
W Wit P
e=———= — = — 87
Qu Qm/t H (87)
Equating (6.6) and (6.7),
Pnight TC
—=— =1—-—=041 8.8
i T (8.8)

Solving for Pyight,
Pnight == 246 kW
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(x%) 9. Two samples of gas, A and B of the same initial volume Vj, and at the same initial absolute pressure

Py, are suddenly compressed adiabatically, each to one half its initial volume.

(a) Express the final pressures (P, Pg) of each sample in terms of the initial pressure Py, if y4 = 5/3

(monatomic) and vg = 7/5 (diatomic)

(b) Find the ratio of work W4 /Wpg required to perform the two compressions described.

Solution:

(a) We have, for an adiabatic process,
PyVy = PsV* = PgVy3P
Since both containers are compressed to one-half of the original volume,

Va=Vg=Vy/2

‘We obtain
V'O YA
= (9)
B
PyVy'® = Pp (?)
Thus

(P4, Pg) = (274 Py, 277 Py) = (3.17Py, 2.641)

(b) For an adiabatic process, the formulas for work are:

B4 _ _
Wa = T (Vi1
YA
Pv’YB
Wo = [ (v )
B

Since

we can plug V4 = Vp/2 into (9.2):

_ PV (VT e
Ma =1, 1\x) %
PV, 1
= 22 -1
1-— YA 21=74
and Vp = V4/2 into (9.3):
PVYE [ (Vo'
W — - v'o _Y _ V B
B 1—vg |\ 2 0

PV 1
= -1
1—7vp 21-78

(9.2)

(9.3)
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Dividing (9.5) by (9.7), we obtain

Wa
Wg

1
oI=va) 1

1
2(=vB) 1

1—9p
1—7a
1—9p
1—4

1.1

2741 1
\2m-1-1
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(%) 10. Two particles A and B execute harmonic motion of the same amplitude (10 cm) on the same straight
line. For particle A, wy = 20 rad/s; for B, wp = 21 rad/s. If at ¢t = 0, they both pass through z = 0 in
the positive z-direction (hence both of them are “in phase”)

(a) How far apart, Az will they be at t = 0.350 s?
(b) What is the velocity V of B relative to A at ¢ = 0.350 s?

(¢) How long after t = 0 does it take for them to both be at = 0 at the same time again?

Solution:

(a) Since we know that the equation of motion of a harmonic oscillator is
x(t) = Acos(wt + ¢) (10.1)
we can use this to find equations of motion for particles A and B.

e At t = 0, both particles are at 0. They also both have positive velocities at this instant.
This means that we should choose a sine instead of a cosine, and set ¢ = 0.
e The amplitudes of both are 10, so choose A = 10 for both motions.

e The angular frequencies are given as w4 = 20 rad/s, and wp = 21 rad/s.

Thus

wa(t) 10 sin(20¢) (10.2)
xp(t) = 10sin(21t) (10.3)

To find the distance between, Az between them at ¢t = 0.35, we take
Az = |zp(0.35) — 24(0.35)]

18.76 — 6.57|
= 2.19cm

(b) We must differentiate to find the equations for velocities.

'y (t) = wa(t) =200 cos(20t) (10.4)
25(t) = wvp(t) =210cos(21t) (10.5)

The velocity of B relative to A at ¢t = 0.35 is

V = wp(0.35) — v4(0.35)
= 101.4 —150.8
—49.4cm/s
(c) We set
zqg = xp=0
10sin(20t) = 10sin(21¢)

sin(20t) = sin(21t) =0
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Thus sin(20t) = 0 if t = nw/20, and sin(21¢’) = 0 if ¢/ = mx /21 for some integers n, m.

Setting t = t/, we obtain
nm/20 = mm/21

This means that

21n =20m
The smallest solution to this equation is n = 20, m = 21 because 20 and 21 share no common
factors.
Thus

t=20m/20 =7s

will be the first time after ¢ = 0 that both objects are at x = 0 simultaneously.
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(%) 11. A 20 g hook with a 5 g weight on it is attached to a vertical spring of negligible mass. When the spring
is displaced from equilibrium the system is found to oscillate in vertical simple harmonic motion with a
period of 7/3 s. If the 5 g weight is replaced by a 25 g weight, how far z can the spring be displaced
from equilibrium before release, if the weight is not to jump off the hook?

Solution: If the period T' = 7/3, then that means

s /m

The mass in the first case was, in total, 25 g, so that gives £k = 0.9 N/m. Now we can calculate the
angular frequency w for the case when the total mass is 45 g.

k
= 11.2
w=yf o (11.2)
/0.9
=1/—— 11.
0.045 (11.3)
=20 (11.4)
=4.47rad/s (11.5)
The mass will jump off if the downward acceleration of the oscillator exceeds g = 9.8 m/ s2.
The maximum acceleration will be zw?, where z is the amplitude of the motion. Thus
2w =g (11.6)
20z = 9.8 (11.7)
2=0.49m (11.8)

Thus z = 49 cm.
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(% %) 12. In an ideal reversible engine employing 28 g nitrogen as working substance (v = 7/5) in a cyclic operation
a — b — ¢ — d without valves, the temperature of the source is 400 K, and the temperature of of the

sink is 300 K. The initial volume of gas at point a is 6.0 litres and the volume at point ¢ is 18.0 litres.

(a) At what volume Vj should the cylinder be changed from heat input (isothermal expansion) to
isolation and adiabatic expansion (from V to V;)?

(b) At what volume V; should the adiabatic compression begin?
()

(d) How much heat AQ.—q is extracted during the V., — V; part?
(e)

(f)

¢) How much heat AQ,_,; is put in during the V, — Vj, part of the cycle?

What is the efficiency e of the engine?
What change AS in entropy per gram occurs in the working substance during ¢ — b and ¢ — d?

Hint. For a Carnot cycle the expansion ratios Vi, /Vy, and V. /Vy are equal. Draw yourself a PV diagram
to help understand the cycle.

Solution: Since the question says an ideal reversible engine, this implies that we should set up a
Carnot cycle. First, we draw a P-V diagram to help us understand the cycle. We know that the
temperature at the upper isotherm is 400 K, and that the temperature at the lower isotherm is 300
K. We also know that a and ¢ have to go in the places they do because the given values tell us the
volumes V, and V..

P (atm)

N

4 b

>V (L)

We will first write down all of our known relations, even though we will not need to use some of
them. Since we are working with 28 g of Nitrogen, and nitrogen is element 7, 28 grams of nitrogen
means 1 mol of nitrogen, so n = 1. We also know the volumes of V, = 6L, and V, = 18L.

For the ideal gas law at each point, we have (because n = 1)

PV, = RT, (12.1)
PV, = RT, (12.2)
PV. = RT. (12.3)
PV, = RITy (12.4)

For the two adiabatic processes, we have

V)t = Tyt (12.5)
TVl = vt (12.6)
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For the two isothermal processes, we have

PV, = BV, (12.7)
PV, = PV, (12.8)

Because this is a Carnot cycle, we have
VoV = VyV (12.9)

Some known values are:
T,=1T,=400K

T, =T, =300K
(a) Plugging in T, = 300, T}, = 400, V, = 18 into (8.5) yields
300V~ = 400V, !
300(187/571) = 953.3
VP =238
V, = 8.8L
(b) Plugging in T, = 300, T,, = 400, V, = 6 to (8.6) yields
400V~ = 300V, "
400(67/°71) = 819
2/5
V2P =273
Vy=12.3L

(¢) The process a — b is isothermal, so the change in internal energy is 0. By the first law of
thermodynamics, we then have AU =0 = AQ — W. Thus

AQa—)b = W

nRT, n(Vy/V,)
= 400RIn(8.8/6)
= 1.26-10%J

(d) The process ¢ — d is isothermal, so the change in internal energy is 0. By the first law of
thermodynamics, we then have AU =0 = AQ — W. Thus

AQC%CI = W

= nRT. In(Vy/V,)
300R 1n(12.3/18)
= —9459J

This means that +945.9 J were removed.
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(e) The efficiency of the engine will be the Carnot efficiency, which is

Tc
=1——=1-0.75=0.25
e TH

Thus the engine is 25% efficient.

(f) During a — b (or ¢ — d, doesn’t matter, it is the same AS), we have

AQa—>b
Ta

1.26 - 103
400

= 3.15J/K

AS =

To find the entropy per gram, divide by the molar mass of Ny. Per gram, that is 3.15/28 =
0.11 J/gK

Remark. If we had instead used AQ.—q/T. = 945/300 = 3.15 we would have gotten the same
answer
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(x % %) 13. A sample of gas undergoes a transition from an initial state a to a final state b by three different paths,
as shown in the P-V diagram, where V;, = 5.00V;. The energy transferred to the gas as heat in process
1is 10P;V;.

(a) How many degrees of freedom does the sample of gas have?
(b) Find the energy transferred to the gas as heat in process 2.

(¢) Find the change in internal energy that the gas undergoes in process 3.

Express your answers in terms of P;, V;.

j4
3pi/2 —
2
bl ¢ 1 b
3

pi/2 =

| |

v, v
Solution:

(a) We will first try and get more data about path 1. Since it is an isobaric process because pressure
is constant, the work done will be

W =PV, = V;) = 4RV,
From the ideal gas law V;/T; = V,, /Ty, we can find that
Ty, = 57T;
AT = 4T;
The change in internal energy will be

AU = nC,AT

nCy (4T;)
4Cv (nT;)
4Cv (PV;/R)

Then we can use the first law of thermodynamics to find a relationship between Cy and R.
AU =Q-W
4Cy P,V;/R = 10P,V; — 4P,V; = 6PV,
Cy =3R/2

Thus we conclude that it is a monatomic gas and has 3 degrees of freedom. Note that the three
degrees of freedom are simply movement in the z, y, and z directions.
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(b) The work for the first segment of path 2 can be found using the area under the line. We use the
formula for the area of a trapezoid.

W = (V, — V;)(P, + 3P;/2)/2 = 5P,V (13.1)

The change in temperature in the first segment of path 2 can be found using the ideal gas law.
We have
PV, |T; = PV, /Ty(5V;) (3P /2) /(T)

T = 15T} /2
This means that AT = 13/2T;.

The change in internal energy will be

AU = nCy(13/2T;) (13.2)
= (13/2)CyPVi/R (13.3)

= (13/2)(3/2)PV; (13.4)
39P;V; /4 (13.5)

We can use the first law of thermodynamics to find that AQ = AU + W for this first segment
of the path (using (14.1) and (14.5)) is

39P,V; /4 + 5P,V; = 59P;V; /4 (13.6)

For the second (vertical) segment of the path, there is no work done. Thus the heat added (at
constant volume) will depend only on the temperature difference. We know that the temperature
at b is 5T}, so then the change in heat energy for this second segment will be

Q =nCy(=5/2T;) = —15P;V; /4 (13.7)
Adding these two heats, we find that the total change in heat energy over path 2 is
AQ = 59P,V; /4 — 15P,V; /4 = 11 PV,
(c) Internal energy is independent of path, so then

AU = nCy (4Ti) = 6PV

(* % %) 14. An insulated container with a movable, frictionless piston of mass M and area A, contains N grams of
helium gas in a volume Vi, as shown. The external pressure is P. The gas is very slowly heated by an
internal heating coil until the volume occupied by the gas is 2V;. What is,

(a) the work W done by the gas?

(b) the heat AQ supplied to the gas?

(c¢) the change AU in the internal energy of the gas?

(d) the initial temperature 7; and the final temperature Ty of the gas?

Express your answers in terms of the given variables M, A, P, N, V.
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Solution:

(c) From the first law of thermodynamics,

(a) The piston has area A, so then we know that

Vi=hA

(PA+ Mg)h
(PA + Mg)Vl
A

Mg

’ILCPAT
PAV

nCp <nR>

5PAV

\V]

| Ot N Ot
I

where h is the distance between the bottom of the container and the piston. Since the piston is
moved so that the container is 217 in volume, we conclude that the piston moved up a distance
of h to a new height of 2h.

The forces on the piston are due to gravity, external pressure P, and the pressure of the gas
inside. The gas must work against the force of gravity and the external pressure. Those two
forces are given by PA 4+ Mg. Thus the work is

(14.1)

(14.2)

(14.3)

(b) The piston moves very slowly. This means that the pressure inside is roughly constant through-
out the expansion. Thus

(14.4)

(14.5)

(14.6)
(14.7)

(14.8)
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AU = AQ-W

(14.9)
(14.10)

(14.11)

(14.12)

(d) Since the forces on the piston must have been balanced at the start, we have, for some initial

pressure P;,

P,A=PA+ Mg

Mg
p=p+-9
t2

From the ideal gas law, we have
BV

‘T AR

(14.13)
(14.14)

(14.15)

Since the gas is helium, we know that there are 4 grams per mol, which means that the number
of moles n is given by n = N/4. Thus, plugging (14.14)) into the ideal gas law ((14.15]),

T;

4V

Mg
NR@+A)

aw
NR

We know that the change in internal energy is

3w
AU = —
2
and since
AU = TLCVAT
we can equate (|14.18)) and (14.19) to obtain
3W N 3R
= Ty T
5 =1 o r—T)
Multiplying both sides of (14.20) by 8/(3NR),
4w
Ne- o hi=T
Thus
T, = 2T;

o 8V1 Mg
NR@+A>

(14.16)

(14.17)

(14.18)

(14.19)

(14.20)
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(% %) 15. A certain linear spring has a free length D. When a mass m is hung on the end, it has a length D + A.
While it is hanging motionless with mass m attached, a second mass m is dropped from a height A onto
the first one, with which it collides inelastically (i.e. they stick together). For the resulting motion, find
the:

(a) period T
(b) amplitude a, and
)

(¢) maximum height H (above the original equilibrium position)

Solution:

(a) We know that w = y/k/m, and T = 27 /w. Performing a force balance on the mass m after it
is placed on the spring, we can calculate the spring constant %k in terms of the given variables.
Since the spring extended by a length A when a mass m was put on it, we know that

mg = kA (15.1)

then rearranging:

k=—2. (15.2)
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The resulting motion in fact has 2m oscillating, but the spring constant is still the same.
Combining the above equation with the definition of angular frequency,

g
=4/ = 15.3
“T\Vaa (15.3)
and rearranging yields
2A
T =2my| — (15.4)
g

The first thing to note is that there will be a new equilibrium position now that a second mass
has been added on top of the previous one. The new mass is 2m, so the extension of the spring
h at the equilibrium height can be calculated by

2mg = kh = (mg/A)h

which gives us h = 2A. Thus the equilibrium length of the spring is D + 2A.

Now we need to find the velocity of the system when the two masses collide. To do this we can
apply the conservation of momentum. When the mass is dropped from a height A it will lose
potential energy mgA, and thus will have velocity

v=1/2gA (15.5)
when it strikes the other mass. By the conservation of momentum, we have
mv = (m 4+ m)vg (15.6)

where vy is the initial velocity of the combined mass (2m). We can then calculate the initial
velocity of the combined mass:
Vo =

gA/2 (15.7)

To solve the remainder of the question, we will apply the conservation of energy. Since the
masses collide at height A above the new equilibrium point, their total energy will be
_ 2mvg | kA?

2 2

Ey (15.8)
(kinetic energy + spring potential energy). Note that there is no gravitational potential energy
term here because that has already been accounted for by the new equilibrium point (measuring
spring displacements from D + 2A instead of displacements from D). When the masses have
zero velocity, they will have the maximum displacement from equilibrium. Thus (again ignoring
gravitational potential) conservation of energy will give us

2mv3  kA?  ka®
= 15.
2 2 2 (15.9)
Thus plugging in vy and k into the above equation and solving for a,
94 1 (o) A (79 @

m< > >+ 1) 3 = 1) 3 (15.10)

2

a
24 = — 15.11
- (15.11)

AV?2

a =

(15.12)
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(¢c) With current equilibrium point (with two masses) at D + 2A, initial equilibrium point (with
only one mass) at D + A, and amplitude a = Av/2, we have the maximum height at

D+2A—V2A=D+ A2 -2
To find how high this is above the initial equilibrium point of D + A, we take the difference:
D+A—-[D+A2-V2)]=AW2-1)

Thus
H=AW2-1)

Remark. If you're uncomfortable with ignoring the gravitational potential energy in part (b), we
will provide a justification here. Suppose we take the gravitational potential energy with respect to
the point where the spring is stretched to D +2A. We must also then use the original spring length
as the one we're taking reference to. That is, we’re measuring how far the spring is stretched from
D, as opposed to how far it is stretched from D + 2A, which is what we measured in part (b). Then

the total energy starts off as
(2m)vg  kA?

Ey = — + (2m)gA
0 5 + 5 + (2m)g
At the point of zero velocity, we have that the energy is
k(24 — a)?
E = % + (2m)ga

Then setting these two expressions equal,

, kA2 k 5
mug + 5 + (2m)gA = 5(214 —a)” + (2m)ag
A A
% + % +2mgA = %(QA —a)? + 2mag
mg 2
A = —(24- 2
3mg 2A< a)® + 2mag
1
A = —(4A’—4aA+d®)+2
3 2A( aA+a”) +2a
6A% = 4A% —4aA+ a® + 4aA
242 = a?

V2A =

and we see that we arrive at the same answer for the new amplitude.
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Useful Constants and Conversion Ratios:
R = Ideal Gas constant = 8.31451 J/molK, 1 atm = 1.013 x 10° Pa, 1 atm - litre = 101.3J

o = Stefan-Boltzmann constant = 5.6704 x 1078 W/m?K*, Yair = 1.4, Cv,,. = 20.8J/molK
Pwater = Density of water = 1 gram/ em® = 1000 kg/ m?
Mechanics:
Linear Motion: z = zg + %(vo +v)t, T = 0+ vot + %atz7 v = vy + at, v? =02 + 2a(z — x0)
Circular Motion: a, = —

r

d

Forces: F = ma = pr g Friction: |F|= u|N]|, Spring: F = —kx, Damping: F = —bv

Buoyant |F| = pVyg
ry

W = Work = / F-dr=F-Ar, K= %mvz, AUgravity = mgAh, AUspring = %kon
P = aw =F v
dt
Thermodynamics:
F AL
Thermal Expansion: AL = aLyAT, Stress and Strain: % Y— Ideal Gas Law: PV = nRT
K, = %kT
AQ AT

Th 1 Conductivity: [ = — = kA—

ermal Conductivity At AL

Black Body Radiation: P = ec AT, Amax] = 2.8977685 x 107 3m - K

Internal Energy: U = nCyT

First Law of Thermodynamics: d@Q = dU + dW For an ideal gas, dW = PdV

Work for an isothermal process W = nRT In(V;/V;)

Work for an adiabatic expansion TV ™! = constant, if the number of moles is constant PV = C
where C' is a constant and v = C’p/C’V

V2av
Work for adiabatic process: W = PdV C/ 71 (V1 L Vat))

Heat Transfer: Q = mcAT, Q = mL7 Cp=Cy+R,Cy = g R, where f = degrees of freedom.

f = 3 for monatomic and f = 5 for diatomic.

dq
dS = —
! |Qc| Q| T
=W COP, in, :70 COP atin, :7}] rn —1_70
€ /QH7 Cooling |W| y Heating ‘W| y €Carnot Ty
Integrals:
. :L,n+1 1
x"dr = +Cn#1 z dr =Inax+C
n+1
Trigonometry:

0, —0 0, +0
sin 0 +sin02=2cos< ! 5 2>sin <1J2rz)

Area and Volume:
Surface Area of a sphere A = 4mr?. Lateral surface area of a cylinder: A = 27rl.

Area of a circle: A = wr?. Volume of a cylinder: V' = Irr? Volume of a sphere: V = %777“3

Oscillations:
w=2rf,T= l, r = Acos(wt + ¢), w? = k
f m
Damped Oscillations: x = Aoe*‘z% cos(wt + ¢), where w = |/ w3 — <b>2, Q= QWE
2m AFE

_bt
m

Energy for damped E = Eye
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Waves:
T 2 1 9
v = E’ k = 77 P = 5/,[/0.} A
YRT 7 P,y
v = _— =
M’ Arr2’

Beats: Af = fo — fi,

Interference: kAx + A¢ = 27n
mu

Standing Waves f,, = 5L

Constants:
k= ~ 9 x 10°Nm?/C?,

47eg

po = 47 x 1077 Tm/A, c=

Point Charge:

k|Q1Q2|
[P = =52,

klq|

Electric potential and pote

)m:1a2737"'7fm:%

2 —
U, Po = PWUSQ

B = 10dBlogy, (ﬁ), Doppler Effect f' = fy (

y = Acos(kr F wt + ¢)

ort(2n+1), n=0,£1,42,£3,4+4,...
L,m:1,3,5,...

€0 = 8.84 x 10712 C? /Nm?, e=16x10"1°C

= 299,792,458 m /s
€00

k

it + Constant

r

b

ntialenergyAV:Va—Vb:/ E-dl:—/ E-dl
b

a

dV
By=——r, E=-VV, AU=U,-U=q(Va—V)
Maxwell’s Equations:
/E-dA:QCDC:47erenC /B«dA:O
S €0 S
ddp ddp
B.dl= Iencose E-d=-—
/C o (Zenclosed) + €0tbo 7 /C 7

Where S is a closed surface and C' is a closed curve. ®g = /E -dA and &g = /B -dA

Energy Density:

1 1
U = §<50E2 and ugp = 2—32

Ho
Forces:
F=gqE+qvxB,F=ILxB
Capacitors:
1 q2 . . . 60A
q=CV,Uc = 3 o For parallel plate capacitor with vacuum (air): C' = R Cliclectric
Inductors:

(energy per volume)

& = —L%, U = LI, where L = N®p/I and N is the number of turns.
For a solenoid B = pgnl where n is the number of turns per unit length.
DC Circuits: Vg = IR, P=VI, P=I’R

(For RC circuits)q = ae "7 + b, 7 = RC,a and b are constants

(For LR circuits)I = ae™ /7 +b,7 = L/R,a and b are constants

AC circuits: XL = (JJL, XC = 1/(0.}0), VC = ch, VL = XLI

V=2I,72=\/(X,—-Xc)*+

If V =V cos(wt), then I = Ipyax cos(wt — ¢), where tan ¢ =

Additional Equations: dB = — -

Rt
2L

LRC Oscillations: ¢ = Age™ 2

(==X
vV F vs

)

= Kcvacuum

ImaX
RZ, Pavemge = IrzmsRv Irrns = \/5
XL —X
L R C7Pav = VimsIrms COS @
pwo Idlxr
4T 73

cos(wt + ¢), where w = 1/ w? — (%)2 and w3 = &



