
Physics 157 Midterm 2 Review Package – Solutions

UBC Engineering Undergraduate Society

Attempt questions to the best of your ability. Problems are ranked in difficulty as (∗) for easy, (∗∗) for
medium, and (∗ ∗ ∗) for difficult. Difficulty is subjective, so do not be discouraged if you are stuck on a (∗)
problem.

Solutions will be posted at: https://ubcengineers.ca/tutoring/

If you believe that there is an error in these solutions, or have any questions, comments, or suggestions
regarding EUS Tutoring sessions, please e-mail us at: tutoring@ubcengineers.ca. If you are interested in
helping with EUS tutoring sessions in the future or other academic events run by the EUS, please e-mail
vpacademic@ubcengineers.ca.

Want a warm up? Short on study time? Want a challenge?
These are the easier problems These cover most of the material These are some tougher questions

1, 2, 3 4, 7, 9 10, 11, 12

Some of the problems in this package were not created by the EUS. Those problems originated from one
of the following sources:

• Fundamentals of Physics / David Halliday, Robert Resnick, Jearl Walker. – 9th ed.

• Exercises for the Feynman Lectures on Physics / Matthew Sands, Richard Feynman, Robert Leighton.

• A Student’s Guide to Entropy / Don Lemons

All solutions prepared by the EUS.

EUS Health and Wellness Study Tips

• Eat Healthy—Your body needs fuel to get through all of your long hours studying. You should eat
a variety of food (not just a variety of ramen) and get all of your food groups in.

• Take Breaks—Your brain needs a chance to rest: take a fifteen minute study break every couple of
hours. Staring at the same physics problem until your eyes go numb wont help you understand the
material.

• Sleep—Weve all been told we need 8 hours of sleep a night, university shouldnt change this. Get to
know how much sleep you need and set up a regular sleep schedule.

Good Luck!

1

https://ubcengineers.ca/tutoring/
mailto:tutoring@ubcengineers.ca
mailto:vpcademic@ubcengineers.ca


Physics 157 Midterm 2 Review Package Page 2 of 29

1.(∗) A constant current of 10 A flows through a resistor of 10 Ω which is kept at the constant temperature
of 10◦C.

(a) What is the rate of entropy change dSR/dt of the resistor?

(b) What contribution dSU/dt is made to the entropy change of the universe?

Solution:

(a) We know that entropy is defined by

dSR =
dQ

T
.

If we’re interested in time rate of change, we can take the derivative with respect to time which
yields

dSR
dt

=
1

T
· dQ
dt

because the temperature T is constant. Note that dQ/dt is the power dissipated by the resistor.
Since P = IV = I2R (because of Ohm’s law), we have

P = 102 · 10 = 1000 W

So then we might wrongly conclude that

dSR
dt

=
1000

273 + 10
= 3.53 J/sK

This is false because, since the resistor is kept at a constant temperature, it will radiate that
energy away. So then the net entropy change in the resistor is actually

dSR
dt

= 0

(b) The contribution to the universe will then be

dSU
dt

= 3.53 J/sK.
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2.(∗) The Solar Constant at Earth’s atmosphere is 1390 W/m2. The radius of the Sun is 695 · 106 m, and the
average distance between the Earth and the Sun is 150 · 109 m. Find

(a) The temperature of the Sun (assuming it radiates as a black-body)

(b) The equilibrium temperature of Earth

Solution:

(a) We start by viewing a sphere centered at the sun and with a radius equal to the distance
between earth and the sun (rE). We know that the Solar Constant (in W/m2) is just the Sun’s
total power divided by the surface area of this sphere.

P = 1390 · (4πr2E) = 3.93 · 1026 W

From the Stefan-Boltzmann Law: P = AσeT 4. Using the radius of the Sun (rS), and knowing
that e = 1 for a black body, we get

P = (4πr2S)σT 4
S

TS =

(
3.93 · 1026

(4πr2S)σ

)1/4

= 5810 K

Where σ is the Stephan-Boltzmann constant.

(b) The equilibrium temperature of Earth (TE) occurs when the radiation absorbed from the Sun
equals the radiation emitted by the Earth. For absorption, we consider the cross-sectional area
of the Earth: a 2-dimensional disk. For emission, we use the entire surface area of the Earth.
We have the power balance

(1− α)πr2E(1390) = 4πr2EσeT
4
E

Here, let’s assume that e = 1 and α = 0 (full absorbtion). Simplifying this equation and solving
for TE gives us

TE =

(
1390

4σ

)1/4

= 280 K
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3.(∗∗) Pluto’s diameter is approximately 2000 km and it is is 40 times farther away from the Sun than the
Earth. The solar constant at the Earth’s atmosphere is 1390 W/m2. Assume emissivity is 1. The albedo
of Pluto is 0.4.

(a) What is the total power absorbed by Pluto?

(b) What is the temperature of Pluto?

(c) Assume that the atmospheric pressure is half that of Earth’s. What is the density of the molecules
on Pluto’s surface? (Hint: use R = 8.2 · 10−5 m3atm/k/mol)

Solution:

(a) We know that the intensity of the Sun’s radiation at any distance is the total power of the Sun
divided by the surface area of a sphere whose radius is equal to that distance. Applying this,
we see

PS = 1390(4πr2E) = IP (4πr2P )

IP =
1390(4πr2E)

4πr2P
=

1390r2E
402r2E

= 0.869 W/m2

We use the equation PP = IPπr
2
p(1− aP ), where aP is the albedo. We get

PP = 0.869π(1 · 106)2(0.6) = 1.637 · 1012 W

(b) We know that the power in equals the power out:

PP = Pout = 4πr2PσT
4
P

TP =

(
IPπr

2
p(1− aP )

4πr2Pσ

)1/4

=

(
IP (1− aP )

4σ

)1/4

= 38.9K

(c) We know the density of molecules will just be the number of molecules divided by the volume
they occupy. We can rearrange PV = nRT to get

n

V
=

P

RT

We multiply both sides by Avogadro’s number, Na = 6.02 · 1023

density =
nNa
V

= PNaRT =
0.5 atm(6.02 · 1023)

8.2 · 10−5(38.9 K)
= 9.44 · 1025 molecules/m3
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4.(∗) One mole of gas in a container is initially at a temperature 127◦C. It is suddenly expanded to twice
its initial volume without heat exchange with the outside. Then it is slowly compressed, holding the
temperature constant, to the original volume. The final temperature is found to be −3◦ C.

(a) What is the coefficient γ of the gas?

(b) What change ∆S in entropy, if any, has occurred?

Solution:

(a) For any pair of T , V during an adiabatic process,

T0V
γ−1
0 = TV γ−1

So then since T0 = 400 K and T = 270 K, we have

400V γ−10 = 270(2V0)γ−1

Thus 400/270 = 2γ−1. Solving for γ, we obtain

γ = 1.57

(b) Adiabatic Process

During the adiabatic process, there is no change in entropy.

dS =
dQ

T

and since dQ = 0, we conclude that dS = 0.

Isothermal Process

For the isothermal process, ∆Q = ∆W because internal energy stays constant as long as
temperature stays constant. Thus

∆Q = nRT ln

(
V0
2V0

)
= −270R ln(2)

∆S =
∆Q

270
= −R ln(2)

= −5.76 J/K
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5.(∗) Determine which (if either) of the systems shown demonstrates simple harmonic motion. Why or why
not?

(a) (b)

Solution: The following diagrams show the forces on the objects

(a) (b)

We know that a mass will execute simple harmonic motion if the restoring force is linearly propor-
tional to its displacement, i.e.

ma+ kx = 0 (5.1)

for mass m and some constant k. Therefore we will construct physical models of both scenarios,
and check if the restoring force creates an equation in the form of (11.1).

(a) Let |F| be the magnitude of the spring force. Then, if we let

l′ =
√
l20 + x2 (5.2)

where x is the horizontal displacement from equilibrium, we see that |F| = k(l′ − l0). (k is the
spring constant)
If we let θ be the angle between the vertical and the spring, then

Fx = −|F| sin θ (5.3)

= −k(l′ − l0) sin θ (5.4)

We will not consider forces in the vertical direction because the mass is constrained to move
only in the horizontal direction.
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Since sin θ = x/l′, we can plug it into (11.4) to obtain

Fx = −k(l′ − l0)x

l′
(5.5)

= −k(
√
l20 + x2 − l0)√
l20 + x2

x (5.6)

This expression is clearly not linear with respect to x. Thus the object will not execute simple
harmonic motion.

(b) If we let x be the horizontal distance from equilibrium, then sin θ = x/R. Since the angle θ
is small, the vertical acceleration is negligible (almost 0). This means that the normal force
|N| ≈ mg.

Fx = −|N| sin θ (5.7)

= −mgx
R

(5.8)

Thus the mass will execute simple harmonic motion for small angles because the restoring force
is linear in x (for small angles).
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6.(∗∗) A gas of coefficient γ in a cylinder of volume V0 at temperature T0 and pressure P0 is compressed slowly
and adiabatically to volume V0/2. After being allowed to come to temperature equilibrium (T0) at this
volume, the gas is then allowed to expand slowly and isothermally to its original volume V0. In terms of
P0, V0, γ, what is the net amount of work W the piston does on the gas?

Solution: The work is done in two processes. First the adiabatic compression, then the isothermal
expansion.

Adiabatic Compression

The work for an adiabatic process is

W =
C

1− γ
(V 1−γ

2 − V 1−γ
1 ),

where C = PV γ , with values of P and V at any particular time during the process. For convenience
we choose C = P0V

γ
0 .

Plugging in V2 = V0/2 and V1 = V0 we obtain

W =
P0V

γ
0

1− γ

(
V 1−γ
0

21−γ
− V 1−γ

0

)
(6.1)

=
P0V0
1− γ

(2γ−1 − 1) (6.2)

Note that this work is the work done by the gas, and thus is negative. Since we are looking for the
work done by the piston, we instead want the negative of (4.2), i.e.

W1 =
P0V0
γ − 1

(2γ−1 − 1) (6.3)

Isothermal Expansion

For the expansion (isothermal), the work is given by

W = nRT ln(Vf/Vi)

Plugging in the given values, we obtain

W = nRT0 ln(V0/(V0/2))

= P0V0 ln(2)

Note that this work is positive because the gas did positive work. Since we are looking for the work
done by the piston, we want

W2 = −P0V0 ln(2) (6.4)

Adding it up

Adding these two works together we obtain the work done by the piston on the gas:∑
W = W1 +W2 (6.5)

= P0V0

(
2γ−1 − 1

γ − 1
− ln(2)

)
(6.6)
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7.(∗∗) An ideal gas with coefficient γ, is initially at the condition P0 = 1 atm, V0 = 1 litre, T0 = 300 K. It is
then:

(i) Heated at constant V until P = 2 atm.

(ii) Expanded at constant P until V = 2 litres.

(iii) Cooled at constant V until P = 1 atm.

(iv) Contracted at constant P until V = 1 litre.

(a) Draw a P–V diagram for this process.

(b) What work W is done per cycle?

(c) What is the maximum temperature Tmax the gas attains?

(d) What is the total heat input ∆Q in steps (i) and (ii) in terms of γ?

Solution:

(a) See figure for P–V diagram.

(b) For an isochoric process (processes (i), (iii)) there is no work done. Therefore we just sum up
the works from processes (ii) and (iv). For process (ii), work is given by

Wii = P∆V = 2(2− 1) = 2 atm · litre = 202.6 J

For process (iv), work is given by

Wiv = P∆V = 1(1− 2) = −1 atm · litre = −101.3 J

Summing up the works, we obtain

W = Wi +Wii +Wiii +Wiv

= 0 + 202.6 + 0− 101.3

= 101.3 J/cycle
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(c) Maximum temperature will be attained when the gas is at largest volume and highest pressure.
This will be after process ii (when P = 2 and V = 2). Since

PV

T
= constant

we can calculate the constant with the initial temperature, pressure, and volume values as

P0V0
T0

=
1

300

Plugging in the values P = 2 and V = 2, we obtain

1

300
=

2 · 2
Tmax

Thus
Tmax = 1200 K

(d) We can use the specific heat capacity equations to find the total heat input. Process i is
isochoric, so

Qi = nCV ∆T

Process ii is isobaric, so
Qii = nCP∆T ′

The changes in temperature for each process are

∆Ti = 300 K

and
∆Tii = 600 K

(From the ideal gas law). Thus

∆Q = Qi +Qii (7.1)

= nCV ∆Ti + nCp∆Tii (7.2)

= 300nCV + 600nCP (7.3)

We want to find a value for n to plug into (5.3). From the ideal gas law,

P0V0 = nRT0 = n(CP − CV )T0 (7.4)

we solve for

n =
P0V0

T0(CP − CV )
=

101.3

300(CP − CV )
(7.5)

Plugging (5.5) into the expression for ∆Q (5.3), we obtain

∆Q = 300CV
101.3

300(CP − CV )
+ 600CP

101.3

300(CP − CV )
(7.6)

= 101.3

(
CV

CP − CV
+ 2

CP
CP − CV

)
(7.7)

= 101.3

(
2CP + CV
CP − CV

)
(7.8)

Dividing numerator and denominator by CV , we obtain

∆Q = 101.3

(
2γ + 1

γ − 1

)
J
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8.(∗∗) The first Earth settlers on the moon will have great problems in keeping their living quarters at a
comfortable temperature. Consider the use of Carnot engines for climate control. Assume that the
temperature during the moon-day is 100◦C, and during the moon-night is −100◦C The temperature
of the living quarters is to be kept at 20◦C. The heat conduction rate through the walls of the living
quarters is 0.5 kW per degree of temperature difference.

(a) Find the power Pday which has to be supplied to the Carnot engine during the day, and

(b) the power Pnight which must be supplied at night.

Solution:

(a) During the daytime, the Carnot engine will be run in reverse, because it is cooling (refriger-
ating) the living quarters. This means that we put in work, and heat is taken from a cold
reservoir (indoors) and sent to a warm reservoir (outdoors).

The equation for coefficient of performance for a refrigerator is

COP =
|QC |
|W |

=
|QC |

|QH | − |QC |

In a Carnot engine,
|QC |
|QH |

=
|TC |
TH |

Thus we arrive at the coefficient of performance for a Carnot refrigerator,

COP =
|QC |

|QH | − |QC |
(8.1)

=
|QC |/|QH |

1− |QC |/|QH |
(8.2)

=
TC

TH − TC
(8.3)

Another way to write the coefficient of performance is

COP =
|QC |
|W |

=
|QC |/t
|W |/t

=
H

P
(8.4)

where H is the heat current through the walls of the living quarters and P is the power supplied
to the engine.

For the daytime, we have TC = 293 K, and TH = 373 K, and H = 40 kW. Combining
(6.3) and (6.4), we obtain

H

Pday
=

TC
TH − TC

(8.5)

Plugging in the appropriate variables into (6.5) and solving for Pday,

Pday = 10.9 kW

(b) For the night time, we have TC = 173 K, and TH = 293 K, and H = 60 kW. Because we want
to heat the interior this time, we will run the Carnot engines forward.
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We have two expressions for efficiency:

e = 1− TC
TH

= 0.41 (8.6)

e =
W

QH
=

W/t

QH/t
=
P

H
(8.7)

Equating (6.6) and (6.7),
Pnight

H
= 1− TC

TH
= 0.41 (8.8)

Solving for Pnight,
Pnight = 24.6 kW
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9.(∗∗) Two samples of gas, A and B of the same initial volume V0, and at the same initial absolute pressure
P0, are suddenly compressed adiabatically, each to one half its initial volume.

(a) Express the final pressures (PA, PB) of each sample in terms of the initial pressure P0, if γA = 5/3
(monatomic) and γB = 7/5 (diatomic)

(b) Find the ratio of work WA/WB required to perform the two compressions described.

Solution:

(a) We have, for an adiabatic process,

P0V
γ
0 = PAV

γA
A = PBV

γB
B (9.1)

Since both containers are compressed to one-half of the original volume,

VA = VB = V0/2

We obtain

P0V
γA
0 = PA

(
V0
2

)γA
P0V

γB
0 = PB

(
V0
2

)γB
Thus

(PA, PB) = (2γAP0, 2
γBP0) = (3.17P0, 2.64P0)

(b) For an adiabatic process, the formulas for work are:

WA =
P0V

γA
0

1− γA
(V 1−γA
A − V 1−γA

0 ) (9.2)

WB =
P0V

γB
0

1− γB
(V 1−γB
B − V 1−γB

0 ) (9.3)

Since
VA = VB = V0/2

we can plug VA = V0/2 into (9.2):

WA =
P0V

γA
0

1− γA

[(
V0
2

)1−γA
− V 1−γA

0

]
(9.4)

=
P0V0

1− γA

(
1

21−γA
− 1

)
(9.5)

and VB = V0/2 into (9.3):

WB =
P0V

γB
0

1− γB

[(
V0
2

)1−γB
− V 1−γB

0

]
(9.6)

=
P0V0

1− γB

(
1

21−γB
− 1

)
(9.7)
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Dividing (9.5) by (9.7), we obtain

WA

WB
=

1− γB
1− γA

·

(
1

2(1−γA) − 1
1

2(1−γB) − 1

)

=
1− γB
1− γA

·
(

2γA−1 − 1

2γB−1 − 1

)
= 1.1
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10.(∗∗) Two particles A and B execute harmonic motion of the same amplitude (10 cm) on the same straight
line. For particle A, ωA = 20 rad/s; for B, ωB = 21 rad/s. If at t = 0, they both pass through x = 0 in
the positive x-direction (hence both of them are “in phase”)

(a) How far apart, ∆x will they be at t = 0.350 s?

(b) What is the velocity V of B relative to A at t = 0.350 s?

(c) How long after t = 0 does it take for them to both be at x = 0 at the same time again?

Solution:

(a) Since we know that the equation of motion of a harmonic oscillator is

x(t) = A cos(ωt+ φ) (10.1)

we can use this to find equations of motion for particles A and B.

• At t = 0, both particles are at 0. They also both have positive velocities at this instant.
This means that we should choose a sine instead of a cosine, and set φ = 0.

• The amplitudes of both are 10, so choose A = 10 for both motions.

• The angular frequencies are given as ωA = 20 rad/s, and ωB = 21 rad/s.

Thus

xA(t) = 10 sin(20t) (10.2)

xB(t) = 10 sin(21t) (10.3)

To find the distance between, ∆x between them at t = 0.35, we take

∆x = |xB(0.35)− xA(0.35)|
= |8.76− 6.57|
= 2.19 cm

(b) We must differentiate to find the equations for velocities.

x′A(t) = vA(t) = 200 cos(20t) (10.4)

x′B(t) = vB(t) = 210 cos(21t) (10.5)

The velocity of B relative to A at t = 0.35 is

V = vB(0.35)− vA(0.35)

= 101.4− 150.8

= −49.4 cm/s

(c) We set

xA = xB = 0

10 sin(20t) = 10 sin(21t)

sin(20t) = sin(21t) = 0
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Thus sin(20t) = 0 if t = nπ/20, and sin(21t′) = 0 if t′ = mπ/21 for some integers n,m.

Setting t = t′, we obtain
nπ/20 = mπ/21

This means that
21n = 20m

The smallest solution to this equation is n = 20, m = 21 because 20 and 21 share no common
factors.

Thus
t = 20π/20 = π s

will be the first time after t = 0 that both objects are at x = 0 simultaneously.
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11.(∗∗) A 20 g hook with a 5 g weight on it is attached to a vertical spring of negligible mass. When the spring
is displaced from equilibrium the system is found to oscillate in vertical simple harmonic motion with a
period of π/3 s. If the 5 g weight is replaced by a 25 g weight, how far z can the spring be displaced
from equilibrium before release, if the weight is not to jump off the hook?

Solution: If the period T = π/3, then that means

T =
π

3
= 2π

√
m

k
(11.1)

The mass in the first case was, in total, 25 g, so that gives k = 0.9 N/m. Now we can calculate the
angular frequency ω for the case when the total mass is 45 g.

ω =

√
k

m
(11.2)

=

√
0.9

0.045
(11.3)

=
√

20 (11.4)

= 4.47 rad/s (11.5)

The mass will jump off if the downward acceleration of the oscillator exceeds g = 9.8 m/s
2
.

The maximum acceleration will be zω2, where z is the amplitude of the motion. Thus

zω2 = g (11.6)

20z = 9.8 (11.7)

z = 0.49 m (11.8)

Thus z = 49 cm.
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12.(∗ ∗ ∗) In an ideal reversible engine employing 28 g nitrogen as working substance (γ = 7/5) in a cyclic operation
a → b → c → d without valves, the temperature of the source is 400 K, and the temperature of of the
sink is 300 K. The initial volume of gas at point a is 6.0 litres and the volume at point c is 18.0 litres.

(a) At what volume Vb should the cylinder be changed from heat input (isothermal expansion) to
isolation and adiabatic expansion (from Vb to Vc)?

(b) At what volume Vd should the adiabatic compression begin?

(c) How much heat ∆Qa→b is put in during the Va → Vb part of the cycle?

(d) How much heat ∆Qc→d is extracted during the Vc → Vd part?

(e) What is the efficiency e of the engine?

(f) What change ∆S in entropy per gram occurs in the working substance during a→ b and c→ d?

Hint. For a Carnot cycle the expansion ratios Vb/Va and Vc/Vd are equal. Draw yourself a P–V diagram
to help understand the cycle.

Solution: Since the question says an ideal reversible engine, this implies that we should set up a
Carnot cycle. First, we draw a P–V diagram to help us understand the cycle. We know that the
temperature at the upper isotherm is 400 K, and that the temperature at the lower isotherm is 300
K. We also know that a and c have to go in the places they do because the given values tell us the
volumes Va and Vc.

We will first write down all of our known relations, even though we will not need to use some of
them. Since we are working with 28 g of Nitrogen, and nitrogen is element 7, 28 grams of nitrogen
means 1 mol of nitrogen, so n = 1. We also know the volumes of Va = 6 L, and Vc = 18 L.
For the ideal gas law at each point, we have (because n = 1)

PaVa = RTa (12.1)

PbVb = RTb (12.2)

PcVc = RTc (12.3)

PdVd = RTd (12.4)

For the two adiabatic processes, we have

TcV
γ−1
c = TbV

γ−1
b (12.5)

TaV
γ−1
a = TdV

γ−1
d (12.6)
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For the two isothermal processes, we have

PaVa = PbVb (12.7)

PcVc = PdVd (12.8)

Because this is a Carnot cycle, we have

VaVc = VdVb (12.9)

Some known values are:

Ta = Tb = 400 K

Tc = Td = 300 K

(a) Plugging in Tc = 300, Tb = 400, Vc = 18 into (8.5) yields

300V γ−1c = 400V γ−1b

300(187/5−1) = 953.3

V
2/5
b = 2.38

Vb = 8.8 L

(b) Plugging in Td = 300, Ta = 400, Va = 6 to (8.6) yields

400V γ−1a = 300V γ−1d

400(67/5−1) = 819

V
2/5
d = 2.73

Vd = 12.3 L

(c) The process a → b is isothermal, so the change in internal energy is 0. By the first law of
thermodynamics, we then have ∆U = 0 = ∆Q−W . Thus

∆Qa→b = W

= nRTa ln(Vb/Va)

= 400R ln(8.8/6)

= 1.26 · 103 J

(d) The process c → d is isothermal, so the change in internal energy is 0. By the first law of
thermodynamics, we then have ∆U = 0 = ∆Q−W . Thus

∆Qc→d = W

= nRTc ln(Vd/Vc)

= 300R ln(12.3/18)

= −945.9 J

This means that +945.9 J were removed.
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(e) The efficiency of the engine will be the Carnot efficiency, which is

e = 1− TC
TH

= 1− 0.75 = 0.25

Thus the engine is 25% efficient.

(f) During a→ b (or c→ d, doesn’t matter, it is the same ∆S), we have

∆S =
∆Qa→b
Ta

=
1.26 · 103

400
= 3.15 J/K

To find the entropy per gram, divide by the molar mass of N2. Per gram, that is 3.15/28 =
0.11 J/gK
Remark. If we had instead used ∆Qc→d/Tc = 945/300 = 3.15 we would have gotten the same
answer
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13.(∗ ∗ ∗) A sample of gas undergoes a transition from an initial state a to a final state b by three different paths,
as shown in the P -V diagram, where Vb = 5.00Vi. The energy transferred to the gas as heat in process
1 is 10PiVi.

(a) How many degrees of freedom does the sample of gas have?

(b) Find the energy transferred to the gas as heat in process 2.

(c) Find the change in internal energy that the gas undergoes in process 3.

Express your answers in terms of Pi, Vi.
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HALLIDAY REVISED

80 Figure 18-55a shows a cylinder containing gas and closed by a
movable piston.The cylinder is kept submerged in an ice–water mix-
ture.The piston is quickly pushed down from position 1 to position 2
and then held at position 2 until the gas is again at the temperature of
the ice–water mixture; it then is slowly raised back to position 1.
Figure 18-55b is a p-V diagram for the process. If 100 g of ice is
melted during the cycle, how much work has been done on the gas?

86 A glass window pane is exactly 20 cm by 30 cm at 10°C. By
how much has its area increased when its temperature is 40°C, as-
suming that it can expand freely?

87 A recruit can join the semi-secret “300 F” club at the
Amundsen–Scott South Pole Station only when the outside tem-
perature is below !70°C. On such a day, the recruit first basks in a
hot sauna and then runs outside wearing only shoes. (This is, of
course, extremely dangerous, but the rite is effectively a protest
against the constant danger of the cold.)

Assume that upon stepping out of the sauna, the recruit’s skin
temperature is 102°F and the walls, ceiling, and floor of the sauna
room have a temperature of 30°C. Estimate the recruit’s surface area,
and take the skin emissivity to be 0.80. (a) What is the approximate
net rate Pnet at which the recruit loses energy via thermal radiation ex-
changes with the room? Next, assume that when outdoors, half the re-
cruit’s surface area exchanges thermal radiation with the sky at a tem-
perature of !25°C and the other half exchanges thermal radiation
with the snow and ground at a temperature of !80°C.What is the ap-
proximate net rate at which the recruit loses energy via thermal radia-
tion exchanges with (b) the sky and (c) the snow and ground?

88 A steel rod at 25.0°C is bolted at both ends and then cooled.
At what temperature will it rupture? Use Table 12-1.

89 An athlete needs to lose weight and decides to do it by “pump-
ing iron.” (a) How many times must an 80.0 kg weight be lifted a dis-
tance of 1.00 m in order to burn off 1.00 lb of fat, assuming that that
much fat is equivalent to 3500 Cal? (b) If the weight is lifted once
every 2.00 s, how long does the task take?

90 Soon after Earth was formed, heat released by the decay of ra-
dioactive elements raised the average internal temperature from 300
to 3000 K, at about which value it remains today. Assuming an aver-
age coefficient of volume expansion of 3.0 " 10!5 K!1, by how much
has the radius of Earth increased since the planet was formed?

91 It is possible to melt ice by rubbing one block of it against an-
other. How much work, in joules, would you have to do to get 1.00
g of ice to melt?

92 A rectangular plate of glass initially has the dimensions 0.200
m by 0.300 m. The coefficient of linear expansion for the glass is
9.00 " 10!6/K.What is the change in the plate’s area if its tempera-
ture is increased by 20.0 K?

93 Suppose that you intercept 5.0 " 10!3 of the energy radiated
by a hot sphere that has a radius of 0.020 m, an emissivity of 0.80,
and a surface temperature of 500 K. How much energy do you in-
tercept in 2.0 min?

94 A thermometer of mass 0.0550 kg and of specific heat 0.837
kJ/kg # K reads 15.0°C. It is then completely immersed in 0.300 kg
of water, and it comes to the same final temperature as the water. If
the thermometer then reads 44.4°C, what was the temperature of
the water before insertion of the
thermometer?

95 A sample of gas expands from
V1 $ 1.0 m3 and p1 $ 40 Pa to V2 $
4.0 m3 and p2 $ 10 Pa along path B
in the p-V diagram in Fig. 18-57. It is
then compressed back to V1 along ei-
ther path A or path C. Compute the
net work done by the gas for the
complete cycle along (a) path BA
and (b) path BC.

Ice and
water

(a)

V1V2

Volume

Pr
es

su
re

Start

(b)

1

2

Fig. 18-55 Problem 80.

81 A sample of gas under-
goes a transition from an initial
state a to a final state b by three
different paths (processes), as
shown in the p-V diagram in Fig.
18-56, where Vb $ 5.00Vi. The en-
ergy transferred to the gas as heat
in process 1 is 10piVi. In terms of
piVi, what are (a) the energy
transferred to the gas as heat in
process 2 and (b) the change in
internal energy that the gas un-
dergoes in process 3?

82 A copper rod, an aluminum rod, and a brass rod, each of 6.00
m length and 1.00 cm diameter, are placed end to end with the alu-
minum rod between the other two. The free end of the copper rod
is maintained at water’s boiling point, and the free end of the brass
rod is maintained at water’s freezing point.What is the steady-state
temperature of (a) the copper–aluminum junction and (b) the alu-
minum–brass junction?

83 The temperature of a Pyrex disk is changed from 10.0°C
to 60.0°C. Its initial radius is 8.00 cm; its initial thickness is 0.500
cm. Take these data as being exact. What is the change in the vol-
ume of the disk? (See Table 18-2.)

84 (a) Calculate the rate at which body heat is conducted through
the clothing of a skier in a steady-state process, given the following
data: the body surface area is 1.8 m2, and the clothing is 1.0 cm thick;
the skin surface temperature is 33°C and the outer surface of the
clothing is at 1.0°C; the thermal conductivity of the clothing is 0.040
W/m #K. (b) If, after a fall, the skier’s clothes became soaked with wa-
ter of thermal conductivity 0.60 W/m #K, by how much is the rate of
conduction multiplied?

85 A 2.50 kg lump of aluminum is heated to 92.0°C and
then dropped into 8.00 kg of water at 5.00°C. Assuming that the
lump–water system is thermally isolated, what is the system’s equi-
librium temperature?

SSM

SSM

SSM

pi/2

pi

3pi/2

Vi Vb
V

a
b

2
1

3

p

Fig. 18-56 Problem 81.

p1

p

p2

V1 V2
V

C

B

A

0

Fig. 18-57 Problem 95.
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Solution:

(a) We will first try and get more data about path 1. Since it is an isobaric process because pressure
is constant, the work done will be

W = Pi(Vb − Vi) = 4PiVi

From the ideal gas law Vi/Ti = Vb/Tb, we can find that

Tb = 5Ti

∆T = 4Ti

The change in internal energy will be

∆U = nCv∆T

= nCV (4Ti)

= 4CV (nTi)

= 4CV (PiVi/R)

Then we can use the first law of thermodynamics to find a relationship between CV and R.

∆U = Q−W

4CV PiVi/R = 10PiVi − 4PiVi = 6PiVi

CV = 3R/2

Thus we conclude that it is a monatomic gas and has 3 degrees of freedom. Note that the three
degrees of freedom are simply movement in the x, y, and z directions.
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(b) The work for the first segment of path 2 can be found using the area under the line. We use the
formula for the area of a trapezoid.

W = (Vb − Vi)(Pi + 3Pi/2)/2 = 5PiVi (13.1)

The change in temperature in the first segment of path 2 can be found using the ideal gas law.
We have

PiVi/Ti = PbVb/Tb(5Vi)(3Pi/2)/(T )

T = 15Ti/2

This means that ∆T = 13/2Ti.

The change in internal energy will be

∆U = nCV (13/2Ti) (13.2)

= (13/2)CV PiVi/R (13.3)

= (13/2)(3/2)PiVi (13.4)

= 39PiVi/4 (13.5)

We can use the first law of thermodynamics to find that ∆Q = ∆U +W for this first segment
of the path (using (14.1) and (14.5)) is

39PiVi/4 + 5PiVi = 59PiVi/4 (13.6)

For the second (vertical) segment of the path, there is no work done. Thus the heat added (at
constant volume) will depend only on the temperature difference. We know that the temperature
at b is 5Ti, so then the change in heat energy for this second segment will be

Q = nCV (−5/2Ti) = −15PiVi/4 (13.7)

Adding these two heats, we find that the total change in heat energy over path 2 is

∆Q = 59PiVi/4− 15PiVi/4 = 11PiVi

(c) Internal energy is independent of path, so then

∆U = nCV (4Ti) = 6PiVi

14.(∗ ∗ ∗) An insulated container with a movable, frictionless piston of mass M and area A, contains N grams of
helium gas in a volume V1, as shown. The external pressure is P . The gas is very slowly heated by an
internal heating coil until the volume occupied by the gas is 2V1. What is,

(a) the work W done by the gas?

(b) the heat ∆Q supplied to the gas?

(c) the change ∆U in the internal energy of the gas?

(d) the initial temperature Ti and the final temperature Tf of the gas?

Express your answers in terms of the given variables M, A, P, N, V1.
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Solution:

(a) The piston has area A, so then we know that

V1 = hA

where h is the distance between the bottom of the container and the piston. Since the piston is
moved so that the container is 2V1 in volume, we conclude that the piston moved up a distance
of h to a new height of 2h.
The forces on the piston are due to gravity, external pressure P , and the pressure of the gas
inside. The gas must work against the force of gravity and the external pressure. Those two
forces are given by PA+Mg. Thus the work is

W = (PA+Mg)h (14.1)

=
(PA+Mg)V1

A
(14.2)

=

(
P +

Mg

A

)
V1 (14.3)

(b) The piston moves very slowly. This means that the pressure inside is roughly constant through-
out the expansion. Thus

∆Q = nCP∆T (14.4)

= nCP

(
P∆V

nR

)
(14.5)

=
5P∆V

2
(14.6)

=
5

2
W (14.7)

=
5

2

(
P +

Mg

A

)
V1 (14.8)

(c) From the first law of thermodynamics,
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∆U = ∆Q−W (14.9)

=
5W

2
−W (14.10)

=
3W

2
(14.11)

=
3

2

(
P +

Mg

A

)
V1 (14.12)

(d) Since the forces on the piston must have been balanced at the start, we have, for some initial
pressure Pi,

PiA = PA+Mg (14.13)

Pi = P +
Mg

A
(14.14)

From the ideal gas law, we have

Ti =
PiVi
nR

(14.15)

Since the gas is helium, we know that there are 4 grams per mol, which means that the number
of moles n is given by n = N/4. Thus, plugging (14.14) into the ideal gas law (14.15),

Ti =
4V1
NR

(
P +

Mg

A

)
(14.16)

=
4W

NR
(14.17)

We know that the change in internal energy is

∆U =
3W

2
(14.18)

and since
∆U = nCV ∆T (14.19)

we can equate (14.18) and (14.19) to obtain

3W

2
=
N

4
· 3R

2
(Tf − Ti) (14.20)

Multiplying both sides of (14.20) by 8/(3NR),

4W

NR
= Tf − Ti = Ti

Thus

Tf = 2Ti

=
8V1
NR

(
P +

Mg

A

)
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15.(∗ ∗ ∗) A certain linear spring has a free length D. When a mass m is hung on the end, it has a length D +A.
While it is hanging motionless with mass m attached, a second mass m is dropped from a height A onto
the first one, with which it collides inelastically (i.e. they stick together). For the resulting motion, find
the:

(a) period T

(b) amplitude a, and

(c) maximum height H (above the original equilibrium position)

Solution:

(a) We know that ω =
√
k/m, and T = 2π/ω. Performing a force balance on the mass m after it

is placed on the spring, we can calculate the spring constant k in terms of the given variables.
Since the spring extended by a length A when a mass m was put on it, we know that

mg = kA (15.1)

then rearranging:

k =
mg

A
. (15.2)
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The resulting motion in fact has 2m oscillating, but the spring constant is still the same.
Combining the above equation with the definition of angular frequency,

ω =

√
g

2A
(15.3)

and rearranging yields

T = 2π

√
2A

g
(15.4)

(b) The first thing to note is that there will be a new equilibrium position now that a second mass
has been added on top of the previous one. The new mass is 2m, so the extension of the spring
h at the equilibrium height can be calculated by

2mg = kh = (mg/A)h

which gives us h = 2A. Thus the equilibrium length of the spring is D + 2A.

Now we need to find the velocity of the system when the two masses collide. To do this we can
apply the conservation of momentum. When the mass is dropped from a height A it will lose
potential energy mgA, and thus will have velocity

v =
√

2gA (15.5)

when it strikes the other mass. By the conservation of momentum, we have

mv = (m+m)v0 (15.6)

where v0 is the initial velocity of the combined mass (2m). We can then calculate the initial
velocity of the combined mass:

v0 =
√
gA/2 (15.7)

To solve the remainder of the question, we will apply the conservation of energy. Since the
masses collide at height A above the new equilibrium point, their total energy will be

E0 =
2mv20

2
+
kA2

2
(15.8)

(kinetic energy + spring potential energy). Note that there is no gravitational potential energy
term here because that has already been accounted for by the new equilibrium point (measuring
spring displacements from D + 2A instead of displacements from D). When the masses have
zero velocity, they will have the maximum displacement from equilibrium. Thus (again ignoring
gravitational potential) conservation of energy will give us

2mv20
2

+
kA2

2
=
ka2

2
(15.9)

Thus plugging in v0 and k into the above equation and solving for a,

m

(
gA

2

)
+
(mg
A

) A2

2
=

(mg
A

) a2
2

(15.10)

2A =
a2

A
(15.11)

a = A
√

2 (15.12)
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(c) With current equilibrium point (with two masses) at D + 2A, initial equilibrium point (with
only one mass) at D +A, and amplitude a = A

√
2, we have the maximum height at

D + 2A−
√

2A = D +A(2−
√

2)

To find how high this is above the initial equilibrium point of D +A, we take the difference:

D +A− [D +A(2−
√

2)] = A(
√

2− 1)

Thus
H = A(

√
2− 1)

Remark. If you’re uncomfortable with ignoring the gravitational potential energy in part (b), we
will provide a justification here. Suppose we take the gravitational potential energy with respect to
the point where the spring is stretched to D+ 2A. We must also then use the original spring length
as the one we’re taking reference to. That is, we’re measuring how far the spring is stretched from
D, as opposed to how far it is stretched from D+ 2A, which is what we measured in part (b). Then
the total energy starts off as

E0 =
(2m)v20

2
+
kA2

2
+ (2m)gA

At the point of zero velocity, we have that the energy is

E =
k(2A− a)2

2
+ (2m)ga

Then setting these two expressions equal,

mv20 +
kA2

2
+ (2m)gA =

k

2
(2A− a)2 + (2m)ag

mgA

2
+
mgA

2
+ 2mgA =

mg

2A
(2A− a)2 + 2mag

3mgA =
mg

2A
(2A− a)2 + 2mag

3A =
1

2A
(4A2 − 4aA+ a2) + 2a

6A2 = 4A2 − 4aA+ a2 + 4aA

2A2 = a2√
2A = a

and we see that we arrive at the same answer for the new amplitude.
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Useful Constants and Conversion Ratios:
R = Ideal Gas constant = 8.31451 J/molK, 1 atm = 1.013× 105 Pa, 1 atm · litre = 101.3 J
σ = Stefan-Boltzmann constant = 5.6704× 10−8 W/m2K4, γair = 1.4, CVair

= 20.8 J/molK
ρwater = Density of water = 1 gram/cm3 = 1000 kg/m3

Mechanics:
Linear Motion: x = x0 + 1

2 (v0 + v)t, x = x0 + v0t+ 1
2at

2, v = v0 + at, v2 = v20 + 2a(x− x0)

Circular Motion: ac =
v2

r

Forces: F = ma =
d

dt
p, Friction: |F| = µ|N|, Spring: F = −kx, Damping: F = −bv

Buoyant |F| = ρV g

W = Work =

∫ rf

ri

F · dr = F ·∆r, K = 1
2mv

2, ∆Ugravity = mg∆h, ∆Uspring = 1
2kx

2

P =
dW

dt
= F · v

Thermodynamics:

Thermal Expansion: ∆L = αL0∆T , Stress and Strain:
|F|
A

= Y
∆L

L
, Ideal Gas Law: PV = nRT

Kav = 3
2kT

Thermal Conductivity: I =
∆Q

∆t
= kA

∆T

∆x
Black Body Radiation: P = eσAT 4, λmaxT = 2.8977685× 10−3m ·K
Internal Energy: U = nCV T
First Law of Thermodynamics: dQ = dU + dW For an ideal gas, dW = PdV
Work for an isothermal process W = nRT ln(Vf/Vi)
Work for an adiabatic expansion TV γ−1 = constant, if the number of moles is constant PV γ = C
where C is a constant and γ = CP /CV

Work for adiabatic process: W =

∫ V2

V1

PdV = C

∫ V2

V1

dV

V γ
=

C

1− γ
(V 1−γ

2 − V 1−γ
1 )

Heat Transfer: Q = mc∆T , Q = mL, CP = CV +R, CV =
f

2
R, where f = degrees of freedom.

f = 3 for monatomic and f = 5 for diatomic.

dS =
dQ

T

e = W/QH , COPCooling =
|QC |
|W |

, COPHeating =
|QH |
|W |

, eCarnot = 1− TC
TH

Integrals:∫
xndx =

xn+1

n+ 1
+ C, n 6= 1

∫
x−1dx = lnx+ C

Trigonometry:

sin θ1 + sin θ2 = 2 cos

(
θ1 − θ2

2

)
sin

(
θ1 + θ2

2

)
Area and Volume:
Surface Area of a sphere: A = 4πr2. Lateral surface area of a cylinder: A = 2πrl.
Area of a circle: A = πr2. Volume of a cylinder: V = lπr2 Volume of a sphere: V = 4

3πr
3

Oscillations:

ω = 2πf , T =
1

f
, x = A cos(ωt+ φ), ω2 =

k

m

Damped Oscillations: x = A0e
− bt

2m cos(ωt+ φ), where ω =

√
w2

0 −
(

b

2m

)2

, Q = 2π
E

∆E

Energy for damped E = E0e
− btm
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Waves:

v =

√
T

µ
, k =

2π

λ
, P = 1

2µω
2A2v, po = ρωvs0

v =

√
γRT

M
, I =

Pav

4πr2
, β = 10dB log10

(
I
I0

)
, Doppler Effect f ′ = f0

(
v ± vL
v ∓ vS

)
Beats: ∆f = f2 − f1, y = A cos(kx∓ ωt+ φ)
Interference: k∆x+ ∆φ = 2πn or π(2n+ 1), n = 0,±1,±2,±3,±4, . . .

Standing Waves fm =
mv

2L
, m = 1, 2, 3, . . . , fm =

mv

4L
, m = 1, 3, 5, . . .

Constants:

k =
1

4πε0
≈ 9× 109 Nm2/C2, ε0 = 8.84× 10−12 C2/Nm2, e = 1.6× 10−19 C

µ0 = 4π × 10−7 Tm/A, c =
1

√
ε0µ0

= 299, 792, 458 m/s

Point Charge:

|F| = k|q1q2|
r2

, |E| = k|q|
r2

, V =
kq

r
+ Constant

Electric potential and potential energy ∆V = Va − Vb =

∫ b

a

E · dl = −
∫ a

b

E · dl

Ex = −dV
dx

, E = −∇V , ∆U = Ua − Ub = q(Va − Vb)
Maxwell’s Equations: ∫

S

E · dA =
Qenc

ε0
= 4πkQenc

∫
S

B · dA = 0

∫
C

B · dl = µ0 (Ienclosed) + ε0µ0
dΦE
dt

∫
C

E · dl = −dΦB
dt

Where S is a closed surface and C is a closed curve. ΦE =

∫
E · dA and ΦB =

∫
B · dA

Energy Density:

uE =
1

2
ε0E

2 and uB =
1

2µ0
B2 (energy per volume)

Forces:
F = qE + qv×B, F = IL×B
Capacitors:

q = CV , UC =
1

2
· q

2

C
, For parallel plate capacitor with vacuum (air): C =

ε0A

d
, Cdielectric = KCvacuum

Inductors:
EL = −LdIdt , UL = 1

2LI
2, where L = NΦB/I and N is the number of turns.

For a solenoid B = µ0nI where n is the number of turns per unit length.
DC Circuits: VR = IR, P = V I, P = I2R
(For RC circuits)q = ae−t/τ + b, τ = RC, a and b are constants
(For LR circuits)I = ae−t/τ + b, τ = L/R, a and b are constants
AC circuits: XL = ωL, XC = 1/(ωC), VC = XCI, VL = XLI

V = ZI, Z =
√

(XL −XC)2 +R2, Paverage = I2rmsR, Irms =
Imax√

2

If V = V0 cos(ωt), then I = Imax cos(ωt− φ), where tanφ =
XL −XC

R
,Pav = VrmsIrms cosφ

Additional Equations: dB =
µ0

4π
· Idl× r

r3

LRC Oscillations: q = A0e
−Rt2L cos(ωt+ φ), where ω =

√
ω2
0 −

(
R
2L

)2
and ω2

0 = 1
LC


