
Physics 158 Midterm 2 Review Package

UBC Engineering Undergraduate Society

Problems are ranked in difficulty as (∗) for easy, (∗∗) for medium, and (∗ ∗ ∗) for difficult. Note that
sometimes difficulty can be subjective, so do not be discouraged if you are stuck on a (∗) problem.

Solutions posted at: https://ubcengineers.ca/tutoring

If you believe that there is an error in these solutions, or have any questions, comments, or suggestions
regarding EUS Tutoring sessions, please e-mail us at: tutoring@ubcengineers.ca. If you are interested in
helping with EUS tutoring sessions in the future or other academic events run by the EUS, please e-mail
vpacademic@ubcengineers.ca.

Want a warm up? Short on study time? Want a challenge?
These are the easier problems These cover most of the material These are some tougher questions

1, 2, 3 3,4,5 7, 8,9,10

Some of the problems in this package were not created by the EUS. Those problems originated from one
of the following sources:

• Introduction to Electrodynamics 3 ed. / David J. Griffths

• Electricity, Magnetism, and Light / Wayne Saslow

• Exercises for the Feynman Lectures on Physics / Matthew Sands, Richard Feynman, Robert Leighton.

All solutions prepared by the EUS.

EUS Health and Wellness Study Tips

• Eat Healthy—Your body needs fuel to get through all of your long hours studying. You should eat
a variety of food (not just a variety of ramen) and get all of your food groups in.

• Take Breaks—Your brain needs a chance to rest: take a fifteen minute study break every couple of
hours. Staring at the same physics problem until your eyes go numb wont help you understand the
material.

• Sleep—We have all been told we need 8 hours of sleep a night, university should not change this. Get
to know how much sleep you need and set up a regular sleep schedule.

Good Luck!
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1.(∗) An AC generator produces 12 A rms at 400 V rms with power factor 1.

(a) Find the rms power produced by this generator.

(b) The generator voltage gets boosted by a step-up transformer to 12 kV. Find the power after the
step-up transformer, assuming no losses in the transformer.

(c) The power is then transmitted to an electrical load with wires having resistance 8 Ω each way, until
it reaches a step-down transformer. Determine the rms power loss in the wires.

(d) Determine the power available to the load.

Solution:

(a) Since the power factor is 1, cosφ = 1, so φ = 0. Thus the average power dissipated by the
circuit (over 1 period) is P = IrmsVrms = (12)(400) = 4800 J.

(b) Since the transformer is lossless, the power is still P = 4800 J.

(c) The rms current after passing through the transformer is given by V I = V I, so (12)(400) =
(12000)I, so I = 0.4 A. Using the formula P = I2rmsR, we have P = (0.42)(8 + 8) = 2.56 J.

(d) The power available will be 4800− 2.56 = 4797.44 J.

2.(∗) Consider a charge q located at the corner of a cube. Find the electric flux through the indicated side.

q

Solution: Consider a larger cube composed of eight of these smaller cubes shown, with q at the
centre. The electric flux through this large cube will be q/ε0. The indicated side is 1/24 the area of
the total cube, so it has flux ΦE = q/24ε0 through it.
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3.(∗∗) Suppose we have two masses with equal mass m and equal charges +q on them. They are hanging
from the ceiling by massless rods of length l. Let 0 < 2θ < π be the angle between the two rods at
equilibrium, when the masses are attached only to their respective rods. Suppose we want the two rods
to be separated by an angle 2ϕ < 2θ.

(a) If an (insulating) spring of initial length l0 = l sinϕ connects the two masses, what spring constant
k must the spring have in order to keep the angle between the two rods 2ϕ?

(b) If we introduce a uniform downward pointing electric field of strength E0, what now is the spring
constant required to keep the angle between the two rods 2ϕ?

Solution:

(a) When the spring is introduced, the system will reach an equilibrium, where for an appropriate
choice of k, the distance between the two masses is 2l sinϕ. This means that the spring will be
stretched by l sinϕ from its initial length. Let’s consider the forces on the left particle. If the
tension in the rod is T , the force equilibrium in the y direction is

Fy = T cosϕ−mg = 0

Which yields

T =
mg

cosϕ

The force equilibrium in the x direction is

Fx = T sinϕ− q2

4πε0(2l sinϕ)2
+ k∆x = 0

Since ∆x = l sinϕ, we can plug in the value for T found above and find k

k =
q2

16πε0l3 sin3 ϕ
− mg

l cosϕ

(b) If we introduce a downward pointing electric field, we will have a different tension in the rod
because the field will push the positive charges downward. Let’s again consider the left particle.
We can calculate this as ∑

Fy = T cosϕ−mg − E0q = 0

This means that the new tension is

T =
mg + E0q

cosϕ

The force equilibrium in the x direction will remain the same, and thus the spring constant will
be

k =
q2

16πε0l3 sin3 ϕ
− E0q +mg

l cosϕ
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4.(∗∗) Consider an RLC circuit with L = 2.5 mH, R = 4 Ω, C = 500 µF, driven by an AC voltage source of
amplitude 24 V, and frequency 400 Hz.

(a) Find XL, XC , Z, and φ.

(b) Find the maximum current and maximum voltage across each of L, C, R.

(c) Find the time by which the driving voltage leads (or lags) the current.

(d) Find the maximum voltage across the combination R and C, and the time by which this voltage
leads (or lags) the current.

(e) Find the maximum voltage across the combination R and L, and the time by which this voltage
leads (or lags) the current.

(f) Find the maximum voltage across the combination L and C, and the time by which this voltage
leads (or lags) the current.

Solution:

(a) First, the angular frequency of the circuit is ω = 800π. Thus we have XL = ωL = 2π = 6.28
Ω, XC = 1/ωC = 2.5/π = 0.796 Ω, Z =

√
(XL −XC)2 +R2 = 6.79 Ω, and φ = arctan((XL −

XC)/R) = 53.9◦.

(b) The maximum current through each of R,C,L will be the same for each element. This current
will be

I0 =
V0
Z

=
24√

(XL −XC)2 +R2
=

24√
6.79

= 3.53 A

The maximum voltage across each element will be its reactance multiplied by I0. Thus,

• Vmax L = XLI0 = (6.28)(3.53) = 22.2 V

• Vmax C = XCI0 = (0.796)(3.53) = 2.81 V

• Vmax R = RI0 = (4)(3.53) = 14.13

(c) Since the current lags the driving voltage by phase angle φ, we have φ = ωt, if φ is radians.
Thus, 0.94 = (800π)(t) ⇒ t = 3.74 · 10−4. So the current lags the voltage by 3.74 · 10−4 s. Or,
equivalently, the voltage leads the current by 3.74 · 10−4 s.

(d) Since the voltages across R and C are 90◦ out of phase, to find the maximum voltage across
their combination requires us to add the voltages across them in quadrature. Thus we have
Vmax C,R =

√
V 2
max C + V 2

max R = 14.41 V. The time by which the voltage across this combination
will lag the current is given by ϕ = ωt, where ϕ = arctan(XC/R). Thus t = 7.81 · 10−5 s. (Note
that ϕ must be in radians)

(e) Since the voltages across R and L are 90◦ out of phase, to find the maximum voltage across
their combination requires us to add the voltages across them in quadrature. Thus we have
Vmax L,R =

√
V 2
max L + V 2

max R = 26.3 V. The time by which the voltage across this combination
will lead the current is given by ϕ = ωt, where ϕ = arctan(XL/R). Thus t = 3.99 · 10−4 s.
(Note that ϕ must be in radians)

(f) Since the voltages across R and L are 180◦out of phase, to find the maximum voltage across their
combination requires us to subtract the max voltages across them. Thus we have Vmax C,L =
Vmax L−Vmax C = 22.2−2.81 = 19.39 V. The angle by which the max voltage across them leads
the current is 90◦, which means that we have ϕ = ωt = π/2 = 800πt. Thus t = 6.25 · 10−4 s
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5.(∗∗) Suppose we have a long solid insulating cylinder of radius a with volume charge density ρ(r) = ρ0(1−r/a)
(in C/m3), and a long concentric conducting shell of inner radius b > a and outer radius c > b. There
is a net linear charge density of λ (in C/m) on the conducting shell. See the cross section below.

(a) Calculate the electric field as a function of r.

(b) Calculate the linear surface charge density σb (in C/m) on the inner surface of the conducting shell
(at radius b).

(c) Calculate the linear surface charge density σc (in C/m) on the outer surface of the conducting shell
(at radius c).

a

b
c

Solution:

(a) First we need to calculate the electric field inside the insulating cylinder (r < a). Using Gauss’s
Law on an imaginary cylindrical surface of length l and radius r, and using the dummy variable
s, we find ∫

E · dA =
Q

ε0

2πrlE =
1

ε0

∫ r

0

ρ(s)(2πsl)ds

=
2πlρ0
ε0

∫ r

0

(
1− s

a

)
sds

=
2πlρ0
ε0

∫ r

0

(
s− s2

a

)
ds

=
2πlρ0
ε0

(
r2

2
− r3

3a

)
Now solving for E, we have

E(r) =
ρ0
ε0

(
r

2
− r2

3a

)
, r < a

The electric field for a < r < b can also be calculated with Gauss’s Law.
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∫
E · dA =

Q

ε0

2πrlE =
1

ε0

∫ a

0

ρ(s)(2πsl)ds

=
2πlρ0
ε0

∫ a

0

(
1− s

a

)
sds

=
2πlρ0
ε0

∫ a

0

(
s− s2

a

)
ds

=
2πlρ0
ε0

a2

6

Now solving for E, we have

E(r) =
a2ρ0
6rε0

, a < r < b

Since the electric field inside a conductor is always zero, E(r) = 0 for b < r < c. Now for r > c,
we need to find the electric field due to the conducting cylinder. By Gauss’s Law, we have

∫
E · dA =

Q

ε0

2πrlE =
λl

ε0

This gives E = λ/(2πε0r). Now adding this with the result for the electric field outside the
insulating cylinder, we have

E(r) =
a2ρ0
6rε0

+
λ

2πε0r
, r > c

All together, the result is

E(r) =


ρ0
ε0

(
r
2 −

r2

3a

)
, 0 < r < a

a2ρ0
6rε0

, a < r < b

0, b < r < c
a2ρ0
6rε0

+ λ
2πr , r > c

(b) Since we know that the electric field inside a conductor is zero, we know that the linear surface
charge density on the inner surface of the conductor must exactly cancel the charge on the
insulating cylinder. This gives us ∫ a

0

ρ(s)(2πsl)ds+ σbl = 0

Solving for σb and making use of the integrals calculated in part (a), we have

σb = −2πa2ρ0
6

(c) Then since σb + σc = λ, we have

σc = λ+
2πa2ρ0

6
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6.(∗∗) A point charge q is at the origin. Consider a circular surface of radius a that is normal to k, at a distance
l from q. The centre of the circular surface is directly above the origin. See the figure. What is the
electric flux through the surface?

q

l 

Solution: First, note that this is an open surface. This means that Gauss’s law does not help us
in this situation.
Consider an annulus in the circle of radius differential dr. Let r2 = x2 + y2. Thus, the magnitude
of the electric field on this annulus is

E =
q

4πε0(r2 + l2)

The flux through the surface is given by

Φ =

∫
E · dA =

∫
E cos θdA

Since we’re looking at small annuli, we have dA = 2πrdr. Since the normal vector to the surface
points directly upward, we have cos θ = l/

√
r2 + l2. Thus we have

Φ =

∫ a

0

E cos θdA

=

∫ a

0

(
q

4πε0(r2 + l2)

)(
l√

r2 + l2

)
2πrdr

=
q

2ε0

(
1− l√

a2 + l2

)
So the flux through the circular surface is

Φ =
q

2ε0

(
1− l√

a2 + l2

)
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7.(∗ ∗ ∗) Imagine that the Earth were of uniform density and that a tunnel was drilled along the diameter from
the North Pole to the South Pole. Assume the Earth is a perfect sphere, and let R and M be the
radius and mass of the Earth, respectively. See the figure below. Also shown in the figure is a spherical
Gaussian surface of radius r

(a) If an object were dropped into the tunnel, show that it will undergo simple harmonic motion.

(b) Find its period P of oscillation.

(c) Show that the period P of oscillation is equal to the period of a satellite orbiting Earth just at the
surface.

Hint. Gauss’s Law for gravitational fields is∮
g · dA = −4πG

∑
i

Mi

It has conceptually identical to Gauss’s Law for electric fields. The analogy is
∑
Q →

∑
M , 1/ε0 →

−4πG, and E→ g. Note that g is the gravitational field (which is analogous to the electric field E).

r

R

N

S

Solution:

(a) Let the mass density of the Earth be ρ. Imagine a spherical Gaussian surface of radius r < R.
Then ∮

g · dA = −4πG

(
4π

3
ρr3
)

∮
gdA =∮

|g||dA| cos(0) =

g

∮
dA =

g(4πr2) = −4πG

(
4π

3
ρr3
)

Thus dividing through by 4πr2,

g(r) = −4

3
πGρr
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From Newton’s Second Law, we obtain

F = ma = mr′′(t) = mg = m

(
−4

3
πGρr(t)

)
Which gives the differential equation

r′′ +
4πGρ

3
r = 0

This is the differential equation of a simple harmonic oscillator. Thus the object will undergo
simple harmonic motion.

(b) The solution to the equation is r(t) = A cos(ωt), where ω2 =
4πGρ

3
. Thus,

P =
2π

ω

=
2π√
4πGρ

3

=

√
3π

Gρ

=

√
3π

G(M/V )

=

√
3πV

GM

=

√
3π 4

3πR
3

GM

=

√
4π2R3

GM

= 2πR

√
R

GM

(c) The period of a satellite orbiting Earth at the surface can be found using the centripetal accel-
eration formula.

|F| = ma =
mv2

R
=
mMG

R2

v =

√
MG

R
=

2πR

P

P = 2πR

√
R

GM

We see that the results from parts (b) and (c) match.
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8.(∗ ∗ ∗) Suppose that you have a series RLC circuit in an FM radio. You tune in on a broadcast using a variable
capacitor. There are two radio stations broadcasting: Station 1 broadcasts at ω1 = 6 · 108, and Station
2 broadcasts at ω2 = 5.99 · 108. The inductance of the inductor is L = 10−6 H, and both stations drive
the circuit with the same max voltage.

(a) Find the value of the capacitor that you need in order to tune in to Station 1.

(b) Fix the value of C to be that found in part (a). If the mean power consumed by the circuit when
listening to Station 1 (in the absence of station 2) is 100 times the mean power consumed by the
circuit when listening to Station 2 (in the absence of station 1), what is the value of the resistor R?

Solution:

(a) Since it is tuned in to ω1, that means the circuit must resonate at this frequency. So ω1 = ω0 =
1/
√
LC. Thus C = 2.778 pF.

(b) P = IrmsVrms cosφ, and P1/P2 = 100, if P1 is the average power dissipated by the circuit when
listening to station 1, and P2 is the average power dissipated by the circuit when listening to
station 2. Using this, we have

Irms1Vrms1 cosφ1
Irms2Vrms2 cosφ2

= 100

When tuned to frequency 1, the circuit is at resonance, so φ1 = 0. We are also told that the
input voltages are the same at each frequency, so the rms voltages cancel out. Thus we have

Irms1

Irms2 cosφ2
= 100

Since Irms = I0/
√

2, we have Irms1 = I0/
√

2 = V0/
√

2Z = V0/
√

2R (Z = R for station 1 because
it is at resonance). We also have

Irms2 = V0/
√

2Z

=
V0√

2
√

(XL −XC)2 +R2

=
V0√

2
√

(ω2L− 1/ω2C)2 +R2

Thus we have
V0√
2R

=
100V0 cosφ2√

2
√

(ω2L− 1/ω2C)2 +R2

Since

tanφ2 =
ω2L− 1/ω2C

R
we have

cosφ2 =
R√

(ω2L− 1/ω2C)2 +R2

This produces
1

R
=

100R

(ω2L− 1/ω2C)2 +R2

So then
100R2 = (ω2L− 1/ω2C)2 +R2

Which yields

R =
|ω2L− 1/ω2C|√

99
=
|599− 601|√

99
= 0.201 Ω



Physics 158 Midterm 2 Review Package Page 11 of 16

9.(∗ ∗ ∗) A charged square insulating wire of side length a, of uniform linear charge density λ, is centred about
the origin of the xy plane with sides parallel to the x and y axes. A charge Q lies a distance l above its
centre. See the figure.

(a) Find the magnitude and direction of the force F acting on the charge Q.

(b) Find the approximate magnitude of the force F acting on the charge Q for l� a.

(c) Find the approximate magnitude of the force F acting on the charge Q for l� a.

(d) If the charge Q has a mass m, and λ < 0, and Q > 0, find the frequency of small oscillations of Q
about the origin.

a

Q
l 

Hint: The following integral may be useful:∫
du

(u2 + α2)3/2
=

u

α2
√
u2 + α2

Solution:

(a) Let λ be the linear charge density of the square insulator. Then, a little element of charge on
the insulator is given by dq = λdx, and the distance from any point (x, y) on the square to the

charge is given by r =
√
x2 + y2 + l2. First, note that the x and y components of the force

on Q will cancel out, and it will only be pushed upwards. Thus, we only need to find the z
component of force on Q from one of the sides, then multiply by 4. Let’s integrate along the x
direction.

dFz =
Qdq cos θ

4πε0r2

=
Qλdx cos θ

4πε0r2

=
Qλdx

4πε0r2
· l
r

=
Qlλdx

4πε0(x2 + y2 + l2)3/2

Thus the force on Q is given by F = Fzk. Note that we set y = a/2 because we integrate along
one side of the square, then multiply the final result by 4.

Fz =

∫ a/2

−a/2

Qlλdx

4πε0(x2 + y2 + l2)3/2

=
Qlλ

4πε0
·
∫ a/2

−a/2

dx

(x2 + (a/2)2 + l2)3/2

=
Qlλ

πε0
·
∫ a/2

−a/2

2dx

(4x2 + (4l2 + a2))3/2
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Evaluating the integral with the help of the hint (I show the steps for evaluating the integral
below if you’re interested) gives:

Qlλ

πε0
·
∫ a/2

−a/2

2dx

(4x2 + (4l2 + a2))3/2
=

Qlλ

πε0(4l2 + a2)
·
(

2x√
4x2 + 4l2 + a2

)∣∣∣∣a/2
−a/2

=
Qla
√

2λ

πε0(4l2 + a2)
√
a2 + 2l2

Thus the force on the charge (multiplying by 4) Q is

F =
Qlaλ4

√
2

πε0(4l2 + a2)
√
a2 + 2l2

k

(b) If l� a, then 4l2 + a2 ≈ 4l2, and
√
a2 + 2l2 ≈

√
2l. Then we have

F ≈ Qaλ

πε0l2
k

which agrees with the model of approximating the charged square as a point charge of magnitude
4aλ, at distance l from the charge Q.

(c) If l� a, then we can approximate 4l2 + a2 ≈ a2, and
√
a2 + 2l2 ≈ a. Then we have

F ≈ λQl4
√

2

πε0a2

(d) Relabelling l = z, we can apply Newton’s second law to obtain

mz′′(t) =
Qλl4

√
2

πε0a2
z(t)

The angular frequency is then (we have a minus sign because Ql < 0)

ω =

√
−Qλl4

√
2

mπε0a2

which gives the frequency

f =
1

2π

√
−Qλl4

√
2

mπε0a2

Evaluation of the Integral (For those interested students)

Qlλ

πε0
·
∫ a/2

−a/2

2dx

(4x2 + (4l2 + a2))3/2

First, we find the antiderivative.
Let 2x =

√
4l2 + a2 tan θ ⇒ 2dx =

√
4l2 + a2 sec2 θdθ. Then∫

2dx

(4x2 + (4l2 + a2))3/2
=

∫ √
4l2 + a2 sec2 θdθ

[(4l2 + a2) tan2 θ + (4l2 + a2)]3/2

=
1

4l2 + a2
·
∫

cos θdθ =
1

4l2 + a2
sin θ
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Expressing sin θ in terms of x gives

1

4l2 + a2
sin θ =

1

4l2 + a2
· 2x√

4x2 + 4l2 + a2

Now, plugging this back into the original expression gives:

Qlλ

πε0
·
∫ a/2

−a/2

2dx

(4x2 + (4l2 + a2))3/2
=

Qlλ

πε0(4l2 + a2)
·
(

2x√
4x2 + 4l2 + a2

)∣∣∣∣a/2
−a/2

=
Qla
√

2λ

πε0(4l2 + a2)
√
a2 + 2l2



Physics 158 Midterm 2 Review Package Page 14 of 16

10.(∗ ∗ ∗) Consider an insulating sphere of radius R, centred at the origin with uniform charge density ρ. A
spherical cavity of radius a is scooped out, with centre at b = 〈b1, b2, b3〉, where a + |b| < R. See the
figure below.

(a) Find the magnitude and direction of the electric field at any point within the cavity.

(b) Find the magnitude and direction of the electric field at the point c = Rb̂, where b̂ is the unit
vector in the b direction.

R

b a

c

Solution:

(a) This problem requires the application of superposition. First, suppose that the sphere is com-
pletely solid. Then, we can use Gauss’s law to find the electric field at any distance r from its
centre. First, take the origin of the coordinate system to be at the centre of the sphere. Then
we have

∮
E1 · dA =

∑
Q

ε0

=
4πr3ρ

3ε0

= |E1|(4πr2)

Thus
|E1| =

ρr

3ε0

So then
E1 =

ρr

3ε0
r̂ =

ρ

3ε0
〈x, y, z〉

We now must consider the cavity. This can be achieved by placing a sphere of charge density
−ρ centred at b, with radius a. The magnitude of the electric field due to this second sphere
will be |E2| = ρr′/3ε0, where r′ is the distance from b. Note that this formula only holds for
r′ < a. Thus we have

E2 =
ρ

3ε0
〈b1 − x, b2 − y, b3 − z〉

The electric field within the cavity is then

E = E1 + E2

=
ρ

3ε0
b

Note that this electric field (within the cavity) is constant.



Physics 158 Midterm 2 Review Package Page 15 of 16

(b) The formula that we obtained for the electric field E1 still holds, because c lies at the surface
of the sphere. However, we must obtain a new formula for the electric field due to the cavity.
The electric field due to the negative mini-sphere will be

|E2| =
−ρ(4πa3/3)

4πε0r′2

=
−ρa3

3ε0r′2

Since we are looking at the surface of the sphere, r′ = R− |b|. The direction of the field will be
in the direction of b. Thus,

E2 =
−ρa3

3ε0(R− |b|)2
b̂

=
−ρa3

3ε0(R− |b|)2|b|
b

The electric field at this point c is then

E = E1 + E2

=
ρb

3ε0

(
R− a3

|b|(R− |b|)2

)
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Waves:

v =

√
T

µ
, k =

2π

λ
, P = 1

2µω
2A2v, po = ρωvs0

v =

√
γRT

M
, I =

Pav

4πr2
, β = 10dB log10

(
I
I0

)
, Doppler Effect f ′ = f0

(
v ± vL
v ∓ vS

)
Beats: ∆f = f2 − f1, y = A cos(kx∓ ωt+ φ)

Interference: k∆x+ ∆φ = 2πn or π(2n+ 1), n = 0,±1,±2,±3,±4, . . .

Standing Waves fm =
mv

2L
, m = 1, 2, 3, . . . , fm =

mv

4L
, m = 1, 3, 5, . . .

Constants:

k =
1

4πε0
≈ 9× 109 Nm2/C2, ε0 = 8.84× 10−12 C2/Nm2, e = 1.6× 10−19 C

µ0 = 4π × 10−7 Tm/A, c =
1

√
ε0µ0

= 299, 792, 458 m/s

Point Charge:

|F| = k|q1q2|
r2

, |E| = k|q|
r2

, V =
kq

r
+ Constant

Electric potential and potential energy ∆V = Va − Vb =

∫ b

a

E · dl = −
∫ a

b

E · dl

Ex = −dV
dx

, E = −∇V , ∆U = Ua − Ub = q(Va − Vb)
Maxwell’s Equations:

∫
S

E · dA =
Qenc

ε0
= 4πkQenc

∫
S

B · dA = 0

∫
C

B · dl = µ0 (Ienclosed) + ε0µ0
dΦE
dt

∫
C

E · dl = −dΦB
dt

Where S is a closed surface and C is a closed curve. ΦE =

∫
E · dA and ΦB =

∫
B · dA

Energy Density:

uE =
1

2
ε0E

2 and uB =
1

2µ0
B2 (energy per volume)

Forces:
F = qE + qv×B, F = IL×B

Capacitors:

q = CV , UC =
1

2
· q

2

C
, For parallel plate capacitor with vacuum (air): C =

ε0A

d
, Cdielectric = KCvacuum

Inductors:
EL = −LdIdt , UL = 1

2LI
2, where L = NΦB/I and N is the number of turns.

For a solenoid B = µ0nI where n is the number of turns per unit length.
DC Circuits: VR = IR, P = V I, P = I2R

(For RC circuits)q = ae−t/τ + b, τ = RC, a and b are constants
(For LR circuits)I = ae−t/τ + b, τ = L/R, a and b are constants
AC circuits: XL = ωL, XC = 1/(ωC), VC = XCI, VL = XLI

V = ZI, Z =
√

(XL −XC)2 +R2, Paverage = I2rmsR, Irms =
Imax√

2

If V = V0 cos(ωt), then I = Imax cos(ωt− φ), where tanφ =
XL −XC

R
,Pav = VrmsIrms cosφ

Additional Equations: dB =
µ0

4π
· Idl× r

r3

LRC Oscillations: q = A0e
−Rt

2L cos(ωt+ φ), where ω =

√
ω2
0 −

(
R
2L

)2
and ω2

0 = 1
LC


